Luogu P4551 最长异或路径
题目链接 \(Click\) \(Here\)
\(01Trie\)好题裸题。
取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\)。
现在路径异或和有两类:
- 跨过根节点,这种的异或路径长度等于两个子节点的\(sumx\)异或和异或起来的数值大小
- 在一棵子树中,这种的异或路径等于\(sumx[u]\)异或上\(sumx[v]\)再异或掉两次\(sumx[1->lca (u, v)]\)(因为被额外计算),依然等于两个子节点的\(sumx\)异或和异或起来的数值大小。
所以问题转为求在\(sumx\)中,对每个\(sumx[u]\),和它产生最大异或和的\(sumx[v]\)最大可以异或出来多少。我们把数列每个值插入\(01Trie\)中,求解时尽可能选择对应位不同的数。复杂度\(O(N*31)\)
#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
int cnt, head[N];
struct edge {
int nxt, to, w;
}e[N << 1];
void add_edge (int from, int to, int val) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].w = val;
head[from] = cnt;
}
void add_len (int u, int v, int w) {
add_edge (u, v, w);
add_edge (v, u, w);
}
int n, u, v, w, sumx[N];
void get_sumx (int u, int fa) {
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
sumx[v] = sumx[u] ^ e[i].w;
get_sumx (v, u);
}
}
}
int ch[N * 31][2], max_size;
void insert (int val) {
int now = 0;
for (int i = 30, to = 0; i >= 0; --i) {
to = ((val & (1 << i)) != 0); //如果 val 第 i 位上为 1
if (!ch[now][to]) {
ch[now][to] = ++max_size;
}
now = ch[now][to];
}
}
int get_ans (int val) {
int now = 0, ans = val;
for (int i = 30; i >= 0; --i) {
if (ans & (1 << i)) {
//这一位为1 -> 向0走
if (ch[now][0] != 0) {
now = ch[now][0];
} else {
val ^= (1 << i);
now = ch[now][1];
}
} else {
//为0 -> 向1走
if (ch[now][1] != 0) {
val ^= (1 << i);
now = ch[now][1];
} else {
now = ch[now][0];
}
}
}
return max (val, ans);
}
int main () {
cin >> n;
for (int i = 1; i <= n - 1; ++i) {
cin >> u >> v >> w;
add_len (u, v, w);
}
get_sumx (1, 0);
for (int i = 1; i <= n; ++i) {
insert (sumx[i]);
}
int ans = 0;
for (int i = 1; i <= n; ++i) {
ans = max (ans, get_ans (sumx[i])); //求sumx与其他数的最大异或
}
cout << ans << endl;
}
Luogu P4551 最长异或路径的更多相关文章
- [luogu] P4551 最长异或路径(贪心)
P4551 最长异或路径 题目描述 给定一棵\(n\)个点的带权树,结点下标从\(1\)开始到\(N\).寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或 ...
- Luogu P4551 最长异或路径 01trie
做一个树上前缀异或和,然后把前缀和插到$01trie$里,然后再对每一个前缀异或和整个查一遍,在树上从高位向低位贪心,按位优先选择不同的,就能贪出最大的答案. #include<cstdio&g ...
- P4551 最长异或路径
题目描述 给定一棵 nnn 个点的带权树,结点下标从 111 开始到 NNN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式 ...
- 洛谷 P4551 最长异或路径
题目描述 给定一棵 nn 个点的带权树,结点下标从 11 开始到 NN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有节点权值的异或. 输入输出格式 输入格式: ...
- P4551 最长异或路径 (01字典树,异或前缀和)
题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式: 第一行一 ...
- 洛谷P4551 最长异或路径
传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...
- 2018.10.26 洛谷P4551 最长异或路径(01trie)
传送门 直接把每个点到根节点的异或距离插入01trie. 然后枚举每个点在01trie上匹配来更新答案就行了. 代码: #include<iostream> #include<cst ...
- luoguP4551最长异或路径
P4551最长异或路径 链接 luogu 思路 从\(1\)开始\(dfs\)求出\(xor\)路径.然后根据性质\(x\)到\(y\)的\(xor\)路径就是\(xo[x]^xo[y]\) 代码 # ...
- 【ybt高效进阶2-4-3】【luogu P4551】最长异或路径
最长异或路径 题目链接:ybt高效进阶2-4-3 / luogu P4551 题目大意 给定一棵 n 个点的带权树,结点下标从 1 开始到 N.寻找树中找两个结点,求最长的异或路径. 异或路径指的是指 ...
随机推荐
- PHP namespace、require、use区别
假设 有文件a.php 代码 <?php class a{//类a public function afun()//函数afun { echo "aaaa"; } } ?&g ...
- cefSharp 开发随笔
最近用cefSharp开发一点简单的东西.记录一点随笔,不定时更新. 1.用nuget安装完之后,架构要选择x86或者x64,否则编译会报错(截止到Chrome 55版本) 2.向Chrome注册C# ...
- vue axios 封装(一)
封装一: 'use strict' import axios from 'axios' import qs from 'qs' import NProgress from 'nprogress' im ...
- h5 打开 app
目前只支持在浏览器中打开,如果非浏览器,例如 微信 支付宝 钉钉 第三方 app 中会弹出下载页面 schemeUrl 为 和app 约定url openApp() { /* 小希学生端 aoji ...
- C Looooops POJ - 2115 拓展gcd 有一个定理待补()
补算法导论P564 MODULAR-LINEAR-EQUATION-SOLVER算法(P564)
- Codeforces519 E. A and B and Lecture Rooms
传送门:>Here< 题意:询问给出一棵无根树上任意两点$a,b$,求关于所有点$i$,$dist(a,i) = dist(b,i)$的点的数量.要求每一次询问在$O(log n)$的时间 ...
- web页面简单布局的修改,测试中的应用
在做功能测试的时候发现,界面显示不美观,觉得登录按钮应向上移动,那么如何移动呢? 很简单:使用开发者工具找到这个按钮所在的div,修改其中的属性值,top值减小,即可实现按钮向上移动,具体可以看效果
- 【XSY2719】prime 莫比乌斯反演
题目描述 设\(f(i)\)为\(i\)的不同的质因子个数,求\(\sum_{i=1}^n2^{f(i)}\) \(n\leq{10}^{12}\) 题解 考虑\(2^{f(i)}\)的意义:有\(f ...
- 普通Splay详解
预备知识: 二叉搜索树(BST) 至于BST,随便看一下就可以, 我们知道二叉搜索树是O(logN)的,那我们为什么要用平衡树呢? 之前我们了解到,BST的插入是小的往左子树走,大的往右子树走,如果凉 ...
- rar自动压缩备份
rem ******MySQL backup start********@echo offforfiles /p "D:\备份\发布软件备份" /m backup_*.sql -d ...