题目链接 \(Click\) \(Here\)

\(01Trie\)好题裸题。

取节点\(1\)为根节点,向下扫每一个点从根节点到它路径上的异或和,我们可以得到一个\(sumx[u]\)。

现在路径异或和有两类:

  • 跨过根节点,这种的异或路径长度等于两个子节点的\(sumx\)异或和异或起来的数值大小
  • 在一棵子树中,这种的异或路径等于\(sumx[u]\)异或上\(sumx[v]\)再异或掉两次\(sumx[1->lca (u, v)]\)(因为被额外计算),依然等于两个子节点的\(sumx\)异或和异或起来的数值大小。

所以问题转为求在\(sumx\)中,对每个\(sumx[u]\),和它产生最大异或和的\(sumx[v]\)最大可以异或出来多少。我们把数列每个值插入\(01Trie\)中,求解时尽可能选择对应位不同的数。复杂度\(O(N*31)\)

#include <bits/stdc++.h>
using namespace std; const int N = 100010; int cnt, head[N]; struct edge {
int nxt, to, w;
}e[N << 1]; void add_edge (int from, int to, int val) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].w = val;
head[from] = cnt;
} void add_len (int u, int v, int w) {
add_edge (u, v, w);
add_edge (v, u, w);
} int n, u, v, w, sumx[N]; void get_sumx (int u, int fa) {
for (int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
if (v != fa) {
sumx[v] = sumx[u] ^ e[i].w;
get_sumx (v, u);
}
}
} int ch[N * 31][2], max_size; void insert (int val) {
int now = 0;
for (int i = 30, to = 0; i >= 0; --i) {
to = ((val & (1 << i)) != 0); //如果 val 第 i 位上为 1
if (!ch[now][to]) {
ch[now][to] = ++max_size;
}
now = ch[now][to];
}
} int get_ans (int val) {
int now = 0, ans = val;
for (int i = 30; i >= 0; --i) {
if (ans & (1 << i)) {
//这一位为1 -> 向0走
if (ch[now][0] != 0) {
now = ch[now][0];
} else {
val ^= (1 << i);
now = ch[now][1];
}
} else {
//为0 -> 向1走
if (ch[now][1] != 0) {
val ^= (1 << i);
now = ch[now][1];
} else {
now = ch[now][0];
}
}
}
return max (val, ans);
} int main () {
cin >> n;
for (int i = 1; i <= n - 1; ++i) {
cin >> u >> v >> w;
add_len (u, v, w);
}
get_sumx (1, 0);
for (int i = 1; i <= n; ++i) {
insert (sumx[i]);
}
int ans = 0;
for (int i = 1; i <= n; ++i) {
ans = max (ans, get_ans (sumx[i])); //求sumx与其他数的最大异或
}
cout << ans << endl;
}

Luogu P4551 最长异或路径的更多相关文章

  1. [luogu] P4551 最长异或路径(贪心)

    P4551 最长异或路径 题目描述 给定一棵\(n\)个点的带权树,结点下标从\(1\)开始到\(N\).寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或 ...

  2. Luogu P4551 最长异或路径 01trie

    做一个树上前缀异或和,然后把前缀和插到$01trie$里,然后再对每一个前缀异或和整个查一遍,在树上从高位向低位贪心,按位优先选择不同的,就能贪出最大的答案. #include<cstdio&g ...

  3. P4551 最长异或路径

    题目描述 给定一棵 nnn 个点的带权树,结点下标从 111 开始到 NNN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式 ...

  4. 洛谷 P4551 最长异或路径

    题目描述 给定一棵 nn 个点的带权树,结点下标从 11 开始到 NN .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有节点权值的异或. 输入输出格式 输入格式: ...

  5. P4551 最长异或路径 (01字典树,异或前缀和)

    题目描述 给定一棵 n 个点的带权树,结点下标从 1 开始到 N .寻找树中找两个结点,求最长的异或路径. 异或路径指的是指两个结点之间唯一路径上的所有边权的异或. 输入输出格式 输入格式: 第一行一 ...

  6. 洛谷P4551 最长异或路径

    传送门:https://www.luogu.org/problem/show?pid=4551 在看这道题之前,我们应懂这道题怎么做:给定n个数和一个数m,求m和哪一个数的异或值最大. 一种很不错的做 ...

  7. 2018.10.26 洛谷P4551 最长异或路径(01trie)

    传送门 直接把每个点到根节点的异或距离插入01trie. 然后枚举每个点在01trie上匹配来更新答案就行了. 代码: #include<iostream> #include<cst ...

  8. luoguP4551最长异或路径

    P4551最长异或路径 链接 luogu 思路 从\(1\)开始\(dfs\)求出\(xor\)路径.然后根据性质\(x\)到\(y\)的\(xor\)路径就是\(xo[x]^xo[y]\) 代码 # ...

  9. 【ybt高效进阶2-4-3】【luogu P4551】最长异或路径

    最长异或路径 题目链接:ybt高效进阶2-4-3 / luogu P4551 题目大意 给定一棵 n 个点的带权树,结点下标从 1 开始到 N.寻找树中找两个结点,求最长的异或路径. 异或路径指的是指 ...

随机推荐

  1. TestNG之使用ReportNG生成测试报告

    TestNG使用ReportNG生成测试报告会更加美观. 依赖包 <!--testNG报告依赖包--> <dependency> <groupId>org.test ...

  2. case when 空值判断

    在对数据库进行查询时,遇到了一个问题:查询结果中的某一列需要判断另一列是否为空的来确定值,自然就想到了case when,于是写出了下面的SQL(其他部分省略): (case date when nu ...

  3. linux 依赖解决办法

    在安装软件过程中如果出现依赖不满足,有两种情况: 1:你系统里面没有安装依赖软件,[但是你的软件源里面有这个软件,你只是没有安装], 这种情况很简单,通过 sudo apt-get install - ...

  4. SpringMVC 重定向到其他系统的页面的两种方式

    //测试重定向到另外的一个系统 @RequestMapping("/tttt") public void testRed(HttpServletResponse response) ...

  5. 官网下载旧版本jdk,老版本jdk,jdk1.7,jdk1.8

    1.进入中文oracle官网(不是国内官网下载速度超级慢): http://www.oracle.com/technetwork/cn/indexes/downloads/index.html 2.进 ...

  6. servlet篇 之 生命周期

    二:Servlet的生命周期 背景知识: servlet是单例,在web项目运行期间,一个servlet只会创建一个对象[tomcat帮我们实例 化][尽量不要在servlet中定义成员变量].因为w ...

  7. Centos使用虚拟环境创建python django工程

    本地环境 通常我们登录就是后就是本地环境 本地环境下查看pip安装了那些包 pip3 list 可以看到本地环境下我们安装的是django1.11.16版本,现在我有个项目要使用django 2.0以 ...

  8. 【XSY2708】hack 网络流

    题目描述 给你一个图,每条边有一个权值.要求你选一些边,满足对于每条从\(1\)到\(n\)的路径上(可以不是简单路径)有且仅有一条被选中的边.问你选择的边的边权和最小值. \(n\leq 100\) ...

  9. MT【307】周期数列

    (2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...

  10. MT【293】拐点处切线

    (2018浙江高考压轴题)已知函数$f(x)=\sqrt{x}-\ln x.$(2)若$a\le 3-4\ln 2,$证明:对于任意$k>0$,直线$y=kx+a$ 与曲线$y=f(x)$有唯一 ...