题目大意:有 \(T\) 个询问,每个询问给定 \(N, M\),求 \(1\le x\le N, 1\le y\le M\) 且 \(gcd(x, y)\) 为质数的 \((x, y)\) 有多少对。

题解:直接像 GCD 那道题一样预处理欧拉函数的前缀和并用素数计算答案贡献会TLE。

考虑采用狄利克雷卷积进行优化。

\[\sum_{k=1}^{n} \sum_{d=1}^{\left\lfloor\frac{n}{K}\right\rfloor} \mu(d) *\left\lfloor\frac{n}{k d}\right\rfloor *\left\lfloor\frac{m}{k d}\right\rfloor \quad(k \in \text { prime })
\]

\[\sum_{k=1}^{n} \sum_{d=1}^{\left\lfloor\frac{n}{\pi}\right\rfloor} \mu(d) *\left\lfloor\frac{n}{T}\right\rfloor *\left\lfloor\frac{m}{T}\right\rfloor(k \in \text { prime })
\]

\[\sum_{T=1}^{n}\left\lfloor\frac{n}{T}\right\rfloor *\left\lfloor\frac{m}{T}\right\rfloor \sum_{k T, k \in p i m r e} \mu\left(\frac{T}{k}\right)
\]

可以 \(O(n)\) 预处理,\(O(\sqrt n)\) 回答每次询问,总时间复杂度为 \(O(n\sqrt n)\)。

代码如下

#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
const int maxn=1e7+10; int n,m;
int mu[maxn],prime[maxn],tot,f[maxn],sum[maxn];
bool vis[maxn]; void seive(){
mu[1]=1;
for(int i=2;i<=1e7;i++){
if(!vis[i])prime[++tot]=i,mu[i]=-1;
for(int j=1;i*prime[j]<=1e7;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=tot;i++)
for(int j=1;j*prime[i]<=1e7;j++)
f[prime[i]*j]+=mu[j];
for(int i=1;i<=1e7;i++)sum[i]=sum[i-1]+f[i];
} void solve(){
ll ans=0;
for(int i=1;i<=n;i++){
int j=min(n/(n/i),m/(m/i));
ans+=(ll)(sum[j]-sum[i-1])*(ll)(n/i)*(ll)(m/i);
i=j;
}
printf("%lld\n",ans);
} int main(){
seive();
int T;scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);
solve();
}
return 0;
}

【洛谷P2257】YY的GCD的更多相关文章

  1. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  2. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  3. 洛谷 P2257 YY的GCD 题解

    原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...

  4. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  5. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  6. 洛谷P2257 YY的GCD

    今日份是数论 大概是..从小学奥数到渐渐毒瘤 那就简单列一下目录[大雾 同余 质数密度 唯一分解定理 互质 完全剩余系 简化剩余系 欧拉函数 逆元 斐蜀定理 阶(及其性质) 欧拉定理 费马小定理 原根 ...

  7. 洛谷P2257 YY的GCD(莫比乌斯反演)

    传送门 原来……莫比乌斯反演是这么用的啊……(虽然仍然不是很明白) 首先,题目所求如下$$\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prim]$$ 我们设$f(d)$表示$g ...

  8. 解题:洛谷2257 YY的GCD

    题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...

  9. [洛谷2257]YY的GCD 题解

    整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...

  10. 洛谷 2257 - YY的GCD

    莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...

随机推荐

  1. Golang的channel使用以及并发同步技巧

    在学习<The Go Programming Language>第八章并发单元的时候还是遭遇了不少问题,和值得总结思考和记录的地方. 做一个类似于unix du命令的工具.但是阉割了一些功 ...

  2. mysql常用运算符

    一.算数运算符 + 加法 - 减法 * 乘法 / 除法 % 返回余数 二.比较运算符 = 等于 <>或!= 不等于 <=> 等于(这里是安全的等于 例如: select nul ...

  3. spring 注解 之 AOP基于@Aspect的AOP配置

    Spring AOP面向切面编程,可以用来配置事务.做日志.权限验证.在用户请求时做一些处理等等.用@Aspect做一个切面,就可以直接实现. 1.首先定义一个切面类,加上@Component  @A ...

  4. js一元运算符

    否运算符(按位非):~    加1取反 console.log(~-); console.log(~-); console.log(~); //-1 void():计算表达式,但是不返回值(仅仅是不返 ...

  5. mysql运行sql文件出错

    从服务器上备份表数据到本地,使用的工具是Navicat,右键表转储sql文件,但是在本地运行sql文件时一直报异常 [Err] 1064 - You have an error in your SQL ...

  6. React 学习(三) ---- state 和 事件处理函数

    在上两节中,我们讲述了props, 组件使用props进行渲染,但是这是一次性的, props渲染完成之后就不做任何事情了,但是现实中却不是这样的,当我们点击购物车上的加减按钮时,数量会自动加1或减1 ...

  7. Java中的CopyOnWrite

    CopyOnWrite简称COW,是一种程序设计的一种优化的策略方法,他开始的思想就是大家一起共享一件东西或商品,当一个人想要改这个事物原有的状态时,会重新复制一份出去,然后再新的事物上面改他所需要的 ...

  8. BZOJ4482[Jsoi2015]套娃——贪心+set

    题目描述 [故事背景] 刚从俄罗斯旅游回来的JYY买了很多很多好看的套娃作为纪念品!比如右 图就是一套他最喜欢的套娃J.JYY由于太过激动,把所有的套娃全 部都打开了.而由于很多套娃长得过于相像,JY ...

  9. 听大佬学长RQY报告有感

    听了RQY大佬的报告,我深有感触…… 数学基础很重要.首先我们要学好数学,众所周知信息学奥赛的实质是做数学题.如果你的编程能力再高,绞尽脑汁就是不会解数学题那有什么用呢?如果你会解数学题,那么你可以根 ...

  10. POJ 2449 Remmarguts' Date (算竞进阶习题)

    A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...