A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line "YES" if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or "NO" if not. Then if the answer is "YES", print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7
8 6 5 7 10 8 11

Sample Output 1:

YES
5 7 6 8 11 10 8

Sample Input 2:

7
8 10 11 8 6 7 5

Sample Output 2:

YES
11 8 10 7 5 6 8

Sample Input 3:

7
8 6 8 5 10 9 11

Sample Output 3:

NO
 #include<cstdio>
#include<iostream>
#include<vector>
using namespace std;
typedef struct NODE{
struct NODE *lchild, *rchild;
int key;
}node;
int N;
vector<int> keys, pre, preM, ans;
void insert(node* &root, int key){
if(root == NULL){
root = new node;
root->key = key;
root->lchild = NULL;
root->rchild = NULL;
return;
}
if(key >= root->key){
insert(root->rchild, key);
}else{
insert(root->lchild, key);
}
}
node* create(vector<int> &keys){
node* root = NULL;
for(int i = ; i < N; i++)
insert(root, keys[i]);
return root;
}
void preOrder(node* root){
if(root == NULL)
return;
pre.push_back(root->key);
preOrder(root->lchild);
preOrder(root->rchild);
}
void preOrder2(node* root){
if(root == NULL)
return;
preM.push_back(root->key);
preOrder2(root->rchild);
preOrder2(root->lchild);
}
void postOrder(node* root){
if(root == NULL)
return;
postOrder(root->lchild);
postOrder(root->rchild);
ans.push_back(root->key);
}
void postOrder2(node* root){
if(root == NULL)
return;
postOrder2(root->rchild);
postOrder2(root->lchild);
ans.push_back(root->key);
} int main(){
int temp;
scanf("%d", &N);
for(int i = ; i < N; i++){
scanf("%d", &temp);
keys.push_back(temp);
}
node* root = create(keys);
preOrder(root);
preOrder2(root);
if(pre == keys ){
printf("YES\n");
postOrder(root);
for(int i = ; i < N; i++){
if(i != N - )
printf("%d ", ans[i]);
else printf("%d", ans[i]);
}
}else if(preM == keys){
printf("YES\n");
postOrder2(root);
for(int i = ; i < N; i++){
if(i != N - )
printf("%d ", ans[i]);
else printf("%d", ans[i]);
}
}else {
printf("NO\n");
}
cin >> N;
return ;
}

总结:

1、题意:给出一组key,先按照给出的顺序建立搜索树。再对其本身和他的镜像进行先序遍历,看看是否先序遍历的序列和给出的一组key顺序相同。

2、对逆转的镜像树,可以不必实际上逆转该树,而仅仅在先序和后序访问左右子树时,从原来的先左后右变成先右后左

3、两个vector在元素为int时可以直接比较

4、注意字符串不要打错,“NO”打成“No”结果检查好久。

5、本题中允许搜索树中有重复的key,在定义中右子树大于等于根节点。  recursively:递归地

A1043. Is It a Binary Search Tree的更多相关文章

  1. A1043 Is It a Binary Search Tree (25 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  2. A1043 Is It a Binary Search Tree (25 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  3. PAT甲级——A1043 Is It a Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  4. PAT_A1043#Is It a Binary Search Tree

    Source: PAT A1043 Is It a Binary Search Tree (25 分) Description: A Binary Search Tree (BST) is recur ...

  5. 1043 Is It a Binary Search Tree (25 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  6. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  7. Leetcode 笔记 99 - Recover Binary Search Tree

    题目链接:Recover Binary Search Tree | LeetCode OJ Two elements of a binary search tree (BST) are swapped ...

  8. Leetcode 笔记 98 - Validate Binary Search Tree

    题目链接:Validate Binary Search Tree | LeetCode OJ Given a binary tree, determine if it is a valid binar ...

  9. Leetcode: Convert sorted list to binary search tree (No. 109)

    Sept. 22, 2015 学一道算法题, 经常回顾一下. 第二次重温, 决定增加一些图片, 帮助自己记忆. 在网上找他人的资料, 不如自己动手. 把从底向上树的算法搞通俗一些. 先做一个例子: 9 ...

随机推荐

  1. CentOs7安装docker(第二篇)

    一.Docker的概念: Docker: 镜像:Images 类似于面向对象中的类 容器:Container 类似于面向对象中的对象 它们之间的关系:容器Container通过镜像Images来创建 ...

  2. JavaScript charAt() 方法

    <script> var str="abcdef"; alert(str[0]); //a,高版本浏览器兼容 alert(str.charAt(0)); //a,兼容所 ...

  3. C# Note22: 《Effective C#》笔记

    参考:<Effective C#>快速笔记(一)- C# 语言习惯 参考:<Effective C#>快速笔记(二)- .NET 资源托管 参考:<Effective C ...

  4. mysql第一天【mysqldump导出数据和mysql导入数据】

    1.使用mysqldump导出数据到本地sql文件 在mysql>bin下执行: 例如: mysqldump -hrm-2ze8mpi5i65429l1qvo.mysql.rds.aliyunc ...

  5. python设计模式第二十三天【状态模式】

    1.应用场景 (1)通过改变对象的内部状态从而改变对象的行为,一般表现为状态的顺序执行 2.代码实现 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from ...

  6. UML符号

    转抄, 语言简练. 挺好. -------------------  -------------------  -------------------  -------------------  -- ...

  7. tomcat 与 nginx,apache的区别

    tomcat 与 nginx,apache的有什么区别 回答一: 题主说的Apache,指的应该是Apache软件基金会下的一个项目——Apache HTTP Server Project:Nginx ...

  8. Jackson将对象转换为json字符串时,设置默认的时间格式

    maven需要的依赖: <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifac ...

  9. @Html自定义属性

    @Html.DropDownList("CardCode", (SelectList)ViewData["cardcodeselectlist"], " ...

  10. static类型的变量

    c语言中变量的储存类型有以下四种 auto  如果没有定义储存类型  默认就是这个类型  比如  int a = 10;  储存类型就是 auto:编译器会跟你定义的位置,以及用途,自动帮你决定使用那 ...