celery分布式异步框架
1.什么是Celery
Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统
专注于实时处理的异步任务队列
同时也支持任务调度
Celery架构

Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等
任务执行单元
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
版本支持情况
python 3.6版本支持celery 4.2.1
Celery version 4.0 runs on
Python ❨2.7, 3.4, 3.5❩
PyPy ❨5.4, 5.5❩
This is the last version to support Python 2.7, and from the next version (Celery 5.x) Python 3.5 or newer is required. If you’re running an older version of Python, you need to be running an older version of Celery: Python 2.6: Celery series 3.1 or earlier.
Python 2.5: Celery series 3.0 or earlier.
Python 2.4 was Celery series 2.2 or earlier. Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please don’t open any issues related to that platform.
2.使用场景
异步任务:将耗时操作任务提交给Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等
定时任务:定时执行某件事情,比如每天数据统计
3.Celery的安装配置
pip install celery
消息中间件:RabbitMQ/Redis
app=Celery('任务名',backend='xxx',broker='xxx')
4.Celery执行异步任务
基本使用
创建项目celerytest
创建py文件:celery_app_task.py
import celery
import time
# broker='redis://127.0.0.1:6379/2' 不加密码
backend='redis://:123456@127.0.0.1:6379/1'
broker='redis://:123456@127.0.0.1:6379/2'
cel=celery.Celery('test',backend=backend,broker=broker)
@cel.task
def add(x,y):
return x+y
创建py文件:add_task.py,添加任务
from celery_app_task import add
result = add.delay(4,5)
print(result.id)
创建py文件:run.py,执行任务,或者使用命令执行:celery worker -A celery_app_task -l info
注:windows下:celery worker -A celery_app_task -l info -P eventlet
eventlet此模块需要另外安装
from celery_app_task import cel
if __name__ == '__main__':
cel.worker_main()
# cel.worker_main(argv=['--loglevel=info')
创建py文件:result.py,查看任务执行结果
from celery.result import AsyncResult
from celery_app_task import cel async = AsyncResult(id="e919d97d-2938-4d0f-9265-fd8237dc2aa3", app=cel) if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
执行 add_task.py,添加任务,并获取任务ID
执行 run.py ,或者执行命令:celery worker -A celery_app_task -l info
执行 result.py,检查任务状态并获取结果
多任务结构
pro_cel
├── celery_task# celery相关文件夹
│ ├── celery.py # celery连接和配置相关文件,必须叫这个名字
│ └── tasks1.py # 所有任务函数
│ └── tasks2.py # 所有任务函数
├── check_result.py # 检查结果
└── send_task.py # 触发任务
celery.py
from celery import Celery
cel = Celery('celery_demo',
broker='redis://127.0.0.1:6379/1',
backend='redis://127.0.0.1:6379/2',
# 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
include=['celery_task.tasks1',
'celery_task.tasks2'
])
# 时区
cel.conf.timezone = 'Asia/Shanghai'
# 是否使用UTC
cel.conf.enable_utc = False
tasks1.py
import time
from celery_task.celery import cel @cel.task
def test_celery(res):
time.sleep(5)
return "test_celery任务结果:%s"%res
tasks2.py
import time
from celery_task.celery import cel
@cel.task
def test_celery2(res):
time.sleep(5)
return "test_celery2任务结果:%s"%res
check_result.py
from celery.result import AsyncResult
from celery_task.celery import cel async = AsyncResult(id="08eb2778-24e1-44e4-a54b-56990b3519ef", app=cel) if async.successful():
result = async.get()
print(result)
# result.forget() # 将结果删除,执行完成,结果不会自动删除
# async.revoke(terminate=True) # 无论现在是什么时候,都要终止
# async.revoke(terminate=False) # 如果任务还没有开始执行呢,那么就可以终止。
elif async.failed():
print('执行失败')
elif async.status == 'PENDING':
print('任务等待中被执行')
elif async.status == 'RETRY':
print('任务异常后正在重试')
elif async.status == 'STARTED':
print('任务已经开始被执行')
send_task.py
from celery_task.tasks1 import test_celery
from celery_task.tasks2 import test_celery2 # 立即告知celery去执行test_celery任务,并传入一个参数
result = test_celery.delay('第一个的执行')
print(result.id)
result = test_celery2.delay('第二个的执行')
print(result.id)
添加任务(执行send_task.py),开启work:celery worker -A celery_task -l info -P eventlet,检查任务执行结果(执行check_result.py)
5.Celery执行定时任务
设定时间让celery执行一个任务
add_task.py
from celery_app_task import add
from datetime import datetime # 方式一
# v1 = datetime(2019, 2, 13, 18, 19, 56)
# print(v1)
# v2 = datetime.utcfromtimestamp(v1.timestamp())将当前时间转成utc格式
# print(v2)
# result = add.apply_async(args=[1, 3], eta=v2)
# print(result.id) # 方式二
ctime = datetime.now()
# 默认用utc时间,需要转成utc时间格式
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=10)
task_time = utc_ctime + time_delay # 使用apply_async并设定时间
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)
类似于contab的定时任务
多任务结构中celery.py修改如下
from datetime import timedelta
from celery import Celery
from celery.schedules import crontab cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[
'celery_task.tasks1',
'celery_task.tasks2',
])
cel.conf.timezone = 'Asia/Shanghai'
cel.conf.enable_utc = False cel.conf.beat_schedule = {
# 名字随意命名
'add-every-10-seconds': {
# 执行tasks1下的test_celery函数
'task': 'celery_task.tasks1.test_celery',
# 每隔2秒执行一次
# 'schedule': 1.0,
# 'schedule': crontab(minute="*/1"),
'schedule': timedelta(seconds=2),
# 传递参数
'args': ('test',)
},
# 'add-every-12-seconds': {
# 'task': 'celery_task.tasks1.test_celery',
# 每年4月11号,8点42分执行
# 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
# 'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
# 'args': (16, 16)
# },
}
启动一个beat:celery beat -A celery_task -l info
注意:同一个目录下只能开启一个beat
启动work执行:celery worker -A celery_task -l info -P eventlet
6.Django中使用Celery
提示:django-celery模块兼容不太友好建议不使用,可以直接用多任务结构,在任何python框架中都能使用
安装包
celery==3.1.25
django-celery==3.1.20
在项目目录下创建celeryconfig.py
import djcelery
djcelery.setup_loader()
CELERY_IMPORTS=(
'app01.tasks',
)
#有些情况可以防止死锁
CELERYD_FORCE_EXECV=True
# 设置并发worker数量
CELERYD_CONCURRENCY=4
#允许重试
CELERY_ACKS_LATE=True
# 每个worker最多执行100个任务被销毁,可以防止内存泄漏
CELERYD_MAX_TASKS_PER_CHILD=100
# 超时时间
CELERYD_TASK_TIME_LIMIT=12*30
在app01目录下创建tasks.py
from celery import task
@task
def add(a,b):
with open('a.text', 'a', encoding='utf-8') as f:
f.write('a')
print(a+b)
视图函数views.py
from django.shortcuts import render,HttpResponse
from app01.tasks import add
from datetime import datetime
def test(request):
# result=add.delay(2,3)
ctime = datetime.now()
# 默认用utc时间
utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
from datetime import timedelta
time_delay = timedelta(seconds=5)
task_time = utc_ctime + time_delay
result = add.apply_async(args=[4, 3], eta=task_time)
print(result.id)
return HttpResponse('ok')
settings.py
INSTALLED_APPS = [
...
'djcelery',
'app01'
] ... from djagocele import celeryconfig
BROKER_BACKEND='redis'
BOOKER_URL='redis://127.0.0.1:6379/1'
CELERY_RESULT_BACKEND='redis://127.0.0.1:6379/2'
celery分布式异步框架的更多相关文章
- 分布式异步框架celery
Celery 1.什么是Clelery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组 ...
- celery 分布式异步队列框架使用方法
简介: Celery 是一个python开发的异步分布式任务调度模块,是一个消息传输的中间件,可以理解为一个邮箱,每当应用程序调用celery的异步任务时,会向broker传递消息,然后celery ...
- Celery分布式异步任务框架
一.什么是Celery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统.专注于实时处理的异步任务队列,同时也支持定时任务 二.Celery架构 1.Celery的架构由三部分组成: 消 ...
- Python开发【模块】:Celery 分布式异步消息任务队列
Celery 前言: Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery, 举几个 ...
- 安装 rabbitmq ,通过生成器获取redis列表数据 与 Celery 分布式异步队列
一.安装rabbitmq @全体成员 超简易安装rabbitmq文档 1.安装配置epel源rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/ ...
- celery 分布式异步任务框架(celery简单使用、celery多任务结构、celery定时任务、celery计划任务、celery在Django项目中使用Python脚本调用Django环境)
一.celery简介: Celery 是一个强大的 分布式任务队列 的 异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行.我们通常使用它来实现异步任务(async tas ...
- django celery的分布式异步之路(一) 起步
如果你看完本文还有兴趣的话,可以看看进阶篇:http://www.cnblogs.com/kangoroo/p/7300433.html 设想你遇到如下场景: 1)高并发 2)请求的执行相当消耗机器资 ...
- Celery—分布式的异步任务处理系统
Celery 1.什么是Clelery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组 ...
- django项目学习之异步框架celery
最近用django一个网上商城项目的时候用两个扩展,感觉还不错,所以在此记录一下. 首先来说下celery,celery是一个处理异步任务的框架,需要下载celery包,一般在项目需要进行耗时操作的时 ...
随机推荐
- SimpleChannelInboundHandler与ChannelInboundHandlerAdapter
参考https://blog.csdn.net/u011262847/article/details/78713881 每一个Handler都一定会处理出站或者入站(也可能两者都处理)数据,例如对于入 ...
- jenkins结合svn检测版本变化执行shell脚本实现项目部署
工具: centos 7 jenkins-2.138.2-1.1.noarch.rpm,2018年10月10号最新版(简单rpm包安装见https://www.cnblogs.com/dannylin ...
- ES6 & Map & hashMap
ES6 & Map & hashMap 01 two-sum https://leetcode.com/submissions/detail/141732589/ hashMap ht ...
- python数学第三天【方向导数】
1.方向导数 2. 梯度 3. 凸函数: 4. 凸函数的判定 5. 凸函数的一般表示 6. 凸性质的应用
- python设计模式第十九天【职责链模式】
1.应用场景 (1)将一个任务拆分为具有顺序的多个部分,每个类完成相应的部分,并且顺序执行 (2)软件窗口的消息传播 (3)SERVLET容积的过滤器Filter的实现 2.代码实现 #!/usr/b ...
- Linux 下 解压zip文件出现乱码
网上下载了一个文件,鼠标右键提取出来发现中文文件名全部乱码: 打开命令行 unzip -h 可以看到 -O 参数 制定编码解压: 比如: unzip -O CP936 xxx.zip
- Nginx 网络事件
L27-29 应用层(如浏览器等一系列组成的发送get请求) 传输层 系统内核打开一个端口将客户端IP及端口和服务端IP及端口记录下来一并传输到网络层 网络层 打包后到链路层 再到客户端路由器至广域网
- 配置 Django
Django项目的设置文件位于项目同名目录下,名叫settings.py.这个模块,集合了整个项目方方面面的设置属性,是项目启动和提供服务的根本保证. 一.简述 settings.py文件本质上是一个 ...
- Git秘钥生成以及Gitlab配置
安装Git:详见http://www.cnblogs.com/xiuxingzhe/p/9300905.html 开通gitlab(开通需要咨询所在公司的gitlab管理员)账号后,本地Git仓库和g ...
- ajax 的json格式
我们平时使用ajax向后台传递数据时,通常会传递json格式的数据,当然这里还有其它格式,比如xml.html.script.text.jsonp格式. json类型的数据包含json对象和json类 ...