题目链接

思路

因为这些数字是从小到大加进去的,所以以当前数字结尾的最长上升子序列可以从前面位置的任何一个数字转移过来。所以只要能知道每个数字最终位于哪个位置就行了。

没想到出了treap还有什么办法求出来这个序列。看了眼题解发现用vector的insert直接模拟就能过。(纳尼?)这个函数不是应该是O(n)的吗。又手写了一个模拟,结果T了7个点。

vector模拟



数组模拟



所以vector的复杂度是O(挺快)????

代码

/*
* @Author: wxyww
* @Date: 2018-12-02 14:49:17
* @Last Modified time: 2018-12-02 17:28:41
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<set>
#include<ctime>
#include<bitset>
#include<vector>
using namespace std;
typedef long long ll;
const int N = 100000 + 100;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int n;
int tree[N << 2];
namespace XDS {
void pushup(int rt) {
tree[rt] = max(tree[rt << 1],tree[rt << 1 | 1]);
}
void update(int rt,int l,int r,int pos,int c) {
if(l == r) {
tree[rt] = c;
return;
}
int mid = (l + r) >> 1;
if(pos <= mid) update(rt << 1,l,mid,pos,c);
else update(rt << 1 | 1,mid + 1,r,pos,c);
pushup(rt);
}
int query(int rt,int l,int r,int L,int R) {
if(L > R) return 0;
if(L <= l && R >= r) return tree[rt];
int mid = (l + r) >> 1;
int ans = 0;
if(L <= mid) ans = max(ans,query(rt << 1,l,mid,L,R));
if(R > mid) ans = max(ans,query(rt << 1 | 1,mid + 1,r,L,R));
return ans;
}
}
int a[N];
vector<int>b;
int main() {
n = read();
for (int i = 1; i <= n; i++)
b.insert(b.begin() + read(), i);
for(int i = 1;i <= n;++i) a[b[i - 1]] = i;
for(int i = 1;i <= n;++i) {
int k = XDS::query(1,1,n,1,a[i] - 1);
XDS::update(1,1,n,a[i],k + 1);
printf("%d\n",XDS::query(1,1,n,1,n));
}
return 0;
}

一言

我觉得,我这辈子最灿烂的笑容,大概都奉献给我电脑屏幕了。 ——bilibili

[luogu4309][最长上升子序列]的更多相关文章

  1. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  2. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  3. [Data Structure] LCSs——最长公共子序列和最长公共子串

    1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...

  4. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  5. LintCode 77: 最长公共子序列

    public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...

  6. 最长下降子序列O(n^2)及O(n*log(n))解法

    求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...

  7. 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题

    先要搞明白:最长公共子串和最长公共子序列的区别.    最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...

  8. [BZOJ3173][Tjoi2013]最长上升子序列

    [BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...

  9. 3173: [Tjoi2013]最长上升子序列

    原题:http://www.lydsy.com/JudgeOnline/problem.php?id=3173 题解:促使我写这题的动力是,为什么百度遍地是Treap,黑人问号??? 这题可以用线段树 ...

随机推荐

  1. 校园电商项目2(基于SSM)——模块设计

    步骤一:各模块职责 步骤二:实体类设计 package com.figsprite.o2o.bean; import java.util.Date; public class Area { priva ...

  2. spring 自己创建配置类

  3. Wiener Filter

    假设分别有两个WSS process:$x[n]$,$y[n]$,这两个process之间存在某种关系,并且我们也了解这种关系.现在我们手头上有process $x[n]$,目的是要设计一个LTI系统 ...

  4. Nginx 当上游服务器返回失败时的处理办法

    陶辉95课 Syntax: proxy_next_upstream error | timeout | invalid_header | http_500 | http_502 | http_503  ...

  5. 微信小程序——部署云函数【三】

    部署login云函数 不部署的话,点击获取openid会报错,报错如下 解决方案呢,很明显的已经告诉我们了 搭建云环境 开通 同意协议 新建环境 每个小程序账号可以创建两个免费环境 确定 部署后再次请 ...

  6. [踩过的坑]Elasticsearch.Net 官网示例的坑

    经过昨天的ElasticSearch 安装,服务以及可以启动了,接下来就可以开发了,找到了官网提供的API以及示例,Es 官方提供的.net 客户端有两个版本一个低级版本: [Elasticsearc ...

  7. The Unique MST POJ - 1679 次小生成树prim

    求次小生成树思路: 先把最小生成树求出来  用一个Max[i][j] 数组把  i点到j 点的道路中 权值最大的那个记录下来 used数组记录该条边有没有被最小生成树使用过   把没有使用过的一条边加 ...

  8. 洛谷P3870开关题解

    我们先看题面,一看是一个区间操作,再看一下数据范围,就可以很轻松地想到是用一个数据结构来加快区间查询和修改的速度,所以我们很自然的就想到了线段树. 但是这个题还跟普通的线段树不一样,这个题可以说要思考 ...

  9. 洛谷P1434滑雪题解及记忆化搜索的基本步骤

    题目 滑雪是一道dp及记忆化搜索的经典题目. 所谓记忆化搜索便是在搜索的过程中边记录边搜索的一个算法. 当下次搜到这里时,便直接使用. 而且记忆化搜索一定要满足无后效性,为什么呢,因为如果不满足无后效 ...

  10. Linux大学实验

    一. 准备工作(预防抄袭,此步必做) 1. 请将提示符设为:学号加波浪号.输入PS1=学号~,如PS1=110015~, 回车执行 2. 如发现提示符.学号不匹配, 视为抄袭或无效 二.操作题(每题5 ...