Pytorch之验证码识别
本文主要实现了两个工作:1.验证码生成 2.Pytorch识别验证码
一. 验证码生成
方法1. 利用PIL库的ImageDraw
实现绘图,此法参考博客实现:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 15:45:04 2018 @author: lps
""" from PIL import Image, ImageDraw, ImageFont, ImageFilter
import random
import cv2
import numpy as np
import matplotlib.pyplot as plt
path = '/media/lps/python-3.5.2.amd64/Lib/site-packages/matplotlib/mpl-data/fonts/ttf/' # 选择字体
data_path = '/home/lps/yanzm/' # random chr
def rndChar():
return chr(random.randint(65, 90)) # 随机字母 def rndInt():
return str(random.randint(0,9)) # 随机数字 def rndColor():
return (random.randint(64, 255), random.randint(64, 255), random.randint(64, 255)) # 随机颜色 def rndColor2():
return (random.randint(32, 127), random.randint(32, 127), random.randint(32, 127)) # 随机颜色 def gaussian_noise(): # 高斯噪声
mu = 125
sigma = 20
return tuple((np.random.normal(mu, sigma, 3).astype(int))) def rotate(x, angle): # 旋转
M_rotate = cv2.getRotationMatrix2D((x.shape[0]/2, x.shape[1]/2), angle, 1)
x = cv2.warpAffine(x, M_rotate, (x.shape[0], x.shape[1]))
return x width = 180 * 4
height = 180 def gen_image(num): for l in range(num): image = Image.new('RGB', (width, height), (255, 255, 255)) # 先生成一张大图 font = ImageFont.truetype(path+'cmb10.ttf', 36) draw = ImageDraw.Draw(image) # 新的画板 for x in range(0,width):
for y in range(0,height):
draw.point((x, y), fill=rndColor()) label = [] for t in range(4): # 每一张验证码4个数字
numb = rndInt()
draw.text((180 * t + 60+10, 60+10), numb, font=font, fill=rndColor2())
label.append(numb) with open(data_path+"label.txt","a") as f:
for s in label:
f.write(s + ' ')
f.writelines("\n") # 写入label img = image.filter(ImageFilter.GaussianBlur(radius=0.5))
img = np.array(img) img1 = np.array([]) for i in range(0,4):
img0 = img[:, 180*i: 180*i+180] # 提取含有验证码的小图
angle = random.randint(-45, 45)
img0 = rotate(img0, angle) # 对小图随机旋转 if img1.any():
img1 = np.concatenate((img1, img0[60:120, 60:120, :]), axis=1) else:
img1 = img0[60:120, 60:120, :] plt.imsave(data_path+'src/' + str(l)+'.jpg', img1) # 保存结果 if __name__=='__main__':
gen_image(100)
结果大致:
方法2. 利用更专业的库:captcha
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 25 19:06:46 2018 @author: lps
"""
from captcha.image import ImageCaptcha
import numpy as np
#import matplotlib.pyplot as plt
from PIL import Image
import random
import cv2 number = ['','','','','','','','','','']
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] data_path = '/home/lps/yanzm/' def random_captcha_text(char_set=number,captcha_size=4): # 可以设置只用来生成数字
captcha_text = []
for i in range(captcha_size):
c = random.choice(char_set)
captcha_text.append(c)
return captcha_text def gen_capthcha_text_and_image(m):
image = ImageCaptcha()
captcha_text = random_captcha_text() # 生成数字
captcha_text = ' '.join(captcha_text) # 生成标签 captcha = image.generate(captcha_text) # image.write(captcha_text,captcha_text+'.jpg') captcha_image = Image.open(captcha)
captcha_image = np.array(captcha_image) with open(data_path+"label.txt","a") as f: # 写入标签
f.write(captcha_text)
f.writelines("\n")
cv2.imwrite(data_path + '/src/'+'%.4d.jpg'%m, captcha_image) # 保存 # return captcha_text,captcha_image if __name__ == '__main__': for m in range(0,5000):
# text,image = gen_capthcha_text_and_image()
gen_capthcha_text_and_image(m) # f = plt.figure()
# ax = f.add_subplot(212)
# ax.text(0.1,0.1,text,ha='center',va='center',transform=ax.transAxes)
# plt.imshow(image)
# plt.show()
#
结果大致:
二. pytorch实现
对于一张验证码来说作为一张单一的图片,每输入一张图片,得到四个数字作为输出,只有4个数字同时预测正确才表示预测正确。所以在每一张图上是四个多二分类器:因为验证码上面的数字为0-9,类似于mnist,只不过此时一张图片对应于4个数字。所以思路很简单,实现如下:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 30 15:46:09 2018 @author: lps
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import torchvision.models as models
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import matplotlib.pyplot as plt
from PIL import Image
#import pandas as pd
import numpy as np
import os
import copy, time file_path = '/home/lps/yanzm'
BATCH_SIZE = 16
EPOCH = 10 # Load data
class dataset(Dataset): def __init__(self, root_dir, label_file, transform=None): self.root_dir = root_dir
self.label = np.loadtxt(label_file)
self.transform = transform def __getitem__(self, idx): img_name = os.path.join(self.root_dir,'%.4d.jpg'%idx)
image = Image.open(img_name)
labels = self.label[idx,:] # sample = image if self.transform:
image = self.transform(image) return image, labels def __len__(self): return (self.label.shape[0]) data = dataset(file_path+'/src', file_path+'/label.txt',transform=transforms.ToTensor()) dataloader = DataLoader(data, batch_size=BATCH_SIZE, shuffle=True, num_workers=4, drop_last=True) dataset_size = len(data) # Conv network
class ConvNet(nn.Module): def __init__(self):
super(ConvNet, self).__init__()
self.conv =nn.Sequential(
nn.Conv2d(3, 32, kernel_size=4, stride=1, padding=2), # in:(bs,3,60,160)
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2), # out:(bs,32,30,80) nn.Conv2d(32, 64, kernel_size=4, stride=1, padding=2),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2), # out:(bs,64,15,40) nn.Conv2d(64, 64, kernel_size=3 ,stride=1, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
nn.MaxPool2d(kernel_size=2) # out:(bs,64,7,20)
) self.fc1 = nn.Linear(64*7*20, 500)
self.fc2 = nn.Linear(500,40) def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1) # reshape to (batch_size, 64 * 7 * 30)
output = self.fc1(x)
output = self.fc2(output) return output # Train the net
class nCrossEntropyLoss(torch.nn.Module): def __init__(self, n=4):
super(nCrossEntropyLoss, self).__init__()
self.n = n
self.total_loss = 0
self.loss = nn.CrossEntropyLoss() def forward(self, output, label):
output_t = output[:,0:10]
label = Variable(torch.LongTensor(label.data.cpu().numpy())).cuda()
label_t = label[:,0] for i in range(1, self.n):
output_t = torch.cat((output_t, output[:,10*i:10*i+10]), 0) # 损失的思路是将一张图平均剪切为4张小图即4个多分类,然后再用多分类交叉熵方损失
label_t = torch.cat((label_t, label[:,i]), 0)
self.total_loss = self.loss(output_t, label_t) return self.total_loss def equal(np1,np2): n = 0
for i in range(np1.shape[0]):
if (np1[i,:]==np2[i,:]).all():
n += 1 return n net = ConvNet().cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
#loss_func = nn.CrossEntropyLoss()
loss_func = nCrossEntropyLoss() best_model_wts = copy.deepcopy(net.state_dict())
best_acc = 0.0 since = time.time()
for epoch in range(EPOCH): running_loss=0.0
running_corrects=0 for step,(inputs,label) in enumerate(dataloader): pred = torch.LongTensor(BATCH_SIZE,1).zero_()
inputs = Variable(inputs).cuda() # (bs, 3, 60, 240)
label = Variable(label).cuda() # (bs, 4) optimizer.zero_grad() output = net(inputs) # (bs, 40)
loss = loss_func(output, label) for i in range(4):
pre = F.log_softmax(output[:,10*i:10*i+10], dim=1) # (bs, 10)
pred = torch.cat((pred, pre.data.max(1, keepdim=True)[1].cpu()), dim=1) # loss.backward()
optimizer.step() running_loss += loss.data[0] * inputs.size()[0]
running_corrects += equal(pred.numpy()[:,1:], label.data.cpu().numpy().astype(int)) epoch_loss = running_loss / dataset_size
epoch_acc = running_corrects / dataset_size if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(net.state_dict()) if epoch == EPOCH-1:
torch.save(best_model_wts, file_path+'/best_model_wts.pkl') print() time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Train Loss:{:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
随机生成5000张图片拿来训练,准确率也会有97%左右。
Pytorch之验证码识别的更多相关文章
- 写给程序员的机器学习入门 (八) - 卷积神经网络 (CNN) - 图片分类和验证码识别
这一篇将会介绍卷积神经网络 (CNN),CNN 模型非常适合用来进行图片相关的学习,例如图片分类和验证码识别,也可以配合其他模型实现 OCR. 使用 Python 处理图片 在具体介绍 CNN 之前, ...
- 字符型图片验证码识别完整过程及Python实现
字符型图片验证码识别完整过程及Python实现 1 摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...
- 验证码识别<1>
1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? p ...
- 简单的验证码识别(opecv)
opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 : 一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理: 验证码 ...
- 利用开源程序(ImageMagick+tesseract-ocr)实现图像验证码识别
--------------------------------------------------低调的分割线-------------------------------------------- ...
- 基于LeNet网络的中文验证码识别
基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013 ...
- Java验证码识别解决方案
建库,去重,切割,识别. package edu.fzu.ir.test; import java.awt.Color; import java.awt.image.BufferedImage; im ...
- 简单验证码识别(matlab)
简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...
- Python验证码识别处理实例(转载)
版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka 一.准备工作与代码实例 1.PIL.pytesser.tesseract ...
随机推荐
- bzoj2004 矩阵快速幂优化状压dp
https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z ...
- SpringCloud之注册中心Eureka搭建
POM: <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring ...
- 2017-12-15python全栈9期第二天第七节之整除
#!/user/bin/python# -*- coding:utf-8 -*-a = 10b = 20print(a // b)print(b // a)
- C函数调用
目录 C函数调用 设置SP SP分析 区分NAND和NOR启动 参数调用 title: C函数调用 tags: ARM date: 2018-10-14 16:37:10 --- C函数调用 设置SP ...
- Hbase 1.3.0 Rsgroup
HBase RSGroup Git环境window环境下,警用crlf自动转换git config --global core.autocrlf false protobuf环境yum install ...
- shell常见文本处理。(awk 替换换行符等)
1 文件里有如下行,我想将每行的回车符替换为逗号,并将所有行合并到一行,用awk或sed怎么写啊TOP_COLUMNTOP_MESSAGETOP_OPTIONSTOP_TOPICTOP_VOTETOP ...
- 利用salt搭建hadoop集群
自动化工具有很多..今天总结一下salt安装hadoop 步骤,学习过程. 1,机器列表 hosts文件 只需要将namenode的两台机器上配置 ,不解释了. 2.salt-master在10 ...
- .net导出Excel几种方式比较
数据原共400条数据,21列,我是双核cpu,4G内存1. Excel com组件要3秒左右,上千条30秒+这种方法比较慢,要引用Microsoft.Office.Interop.Excel #reg ...
- http-request详解
HTTP请求 请求数据格式 响应数据格式 request
- 定时调度篇之Quartz.Net详解(被替换)
一. 背景 我们在日常开发中,可能你会遇到这样的需求:"每个月的3号给用户发信息,提醒用户XXX "."每天的0点需要统计前一天的考勤记录"."每个月 ...