Utterance-Wise Recurrent Dropout And Iterative Speaker Adaptation For Robust Monaural Speech Recognition
单声道语音识别的逐句循环Dropout迭代说话人自适应
WRBN(wide residual BLSTM network,宽残差双向长短时记忆网络)
[2] J. Heymann, L. Drude, and R. Haeb-Umbach, "Wide residual blstm network with discriminative speaker adaptation for robust speech recognition," submitted to the CHiME, vol. 4, 2016.
reverberation,n. [声] 混响;反射;反响;回响
CLDNN(convolutional, long short-term memory, fully connected deep neural networks,卷积-长短时记忆-全连接深度神经网络)
[1] T.N. Sainath, O. Vinyals, A. Senior, and H. Sak, "Convolutional, long short-term memory, fully connected deep neural networks," in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on. IEEE, 2015, pp. 4580–4584.
speech separation,语音分离,将多说话人同时说话的语句分离为各个说话人独立说话的语句。
在LSTM训练中使用Dropout能有效缓解过拟合。
[3] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv preprint arXiv:1207.0580, 2012.
在输出门、遗忘门以及输入门使用基于语句采样丢帧Mask能取得最优结果(Cheng dropout)。
[7] G. Cheng, V. Peddinti, D. Povey, V. Manohar, S. Khudanpur, and Y. Yan, "An exploration of dropout with lstms," in Proceedings of Interspeech, 2017.
基于MLLR的迭代自适应方法,使用上一次迭代的解码结果来更新高斯参数。
, vol. 2, pp. 1133–1136.
近期提出了一种batch正则化说话人自适应。
[14] P. Swietojanski, J. Li, and S. Renals, "Learning hidden unit contributions for unsupervised acoustic model adaptation," IEEE/ACMTransactionsonAudio,Speech, and Language Processing, vol. 24, no. 8, pp. 1450– 1463, 2016.
本文使用了无监督的LIN说话人自适应
[11]
使用的LIN层矩阵维数为80*80,该层被三个输入特征共享(原始、delta、delta-delta)。
本文尝试使用以下两种方式进行迭代的说话人自适应:
- 在迭代时使用上一次迭代的模型生成新标签进行训练。
- 每次迭代堆叠一个额外的线性输入层(数学上,多个线性层相当于一个隐层)
传统DNN训练方式是segment-wise
实验得出,使用RNN时,Iter(迭代方案)更优;使用tri-gram时,Stack(堆叠)方案更优
Utterance-Wise Recurrent Dropout And Iterative Speaker Adaptation For Robust Monaural Speech Recognition的更多相关文章
- A Bayesian Approach to Deep Neural Network Adaptation with Applications to Robust Automatic Speech Recognition
基于贝叶斯的深度神经网络自适应及其在鲁棒自动语音识别中的应用 直接贝叶斯DNN自适应 使用高斯先验对DNN进行MAP自适应 为何贝叶斯在模型自适应中很有用? 因为自适应问题可以视为后验估计问题 ...
- Empirical Evaluation of Speaker Adaptation on DNN based Acoustic Model
DNN声学模型说话人自适应的经验性评估 年3月27日 发表于:Sound (cs.SD); Computation and Language (cs.CL); Audio and Speech Pro ...
- (zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks
Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in ...
- 论文翻译:2020_FLGCNN: A novel fully convolutional neural network for end-to-end monaural speech enhancement with utterance-based objective functions
论文地址:FLGCNN:一种新颖的全卷积神经网络,用于基于话语的目标函数的端到端单耳语音增强 论文代码:https://github.com/LXP-Never/FLGCCRN(非官方复现) 引用格式 ...
- Recurrent Neural Network[survey]
0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...
- (zhuan) Recurrent Neural Network
Recurrent Neural Network 2016年07月01日 Deep learning Deep learning 字数:24235 this blog from: http:/ ...
- 深度自适应增量学习(Incremental Learning Through Deep Adaptation)
深度自适应增量学习(Incremental Learning Through Deep Adaptation) 2018-05-25 18:56:00 木呆呆瓶子 阅读数 10564 收藏 更多 分 ...
- Text Prompted Remote Speaker Authentication : Joint Speech and Speaker Recognition/Verification System :: Major Project ::: Introduction
转载自:http://ganeshtiwaridotcomdotnp.blogspot.com/2010/12/text-prompted-remote-speaker.html Biometrics ...
- 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement
论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...
随机推荐
- A1144. The Missing Number
Given N integers, you are supposed to find the smallest positive integer that is NOT in the given li ...
- Windows 10 配置系统环境变量
首先在桌面找到此电脑(或我的电脑)右击找到属性 点击进入 之后进入到系统详情窗口找到高级系统设置 点击进入 找到环境变量 点击进入 找到Path 点击进入 找到新建点击 将你要为那个应用设置环境的绝对 ...
- 关于 tlb 文件
来自:http://blog.csdn.net/lcl_data/article/details/7418387 tlb文件是什么?tlb文件是一个说明文件,通过TLB文件,用户可以得知你的DLL中的 ...
- try语句的使用
C语言里try是一个语句或函数.其作用是是抛出错误用. 将有可能产生错误的语句括在一起,放入try语句块.如果在try语句块中发生异常,FlashPlayer会创建一个错误对象,并将该Error对象派 ...
- 10款 Mac 经典原型设计开发软件推荐
在Mac上有大量强大的开发和设计工具,今天和大家推荐10款Mac上的经典原型设计开发工具,原型设计工具是开发者必备的一款工具,无论是网站开发还是移动APP开发,都需要在前期进行严格细致的原型设计,才能 ...
- Object的数据属性和访问器属性
一.数据属性 1.数据属性:它包含的是一个数据值的位置,在这可以对数据值进行读写. 2.数据属性包含四个特性,分别是: configurable:表示能否通过delete删除属性从而重新定义属性,能否 ...
- JavaSE_坚持读源码_Object对象_Java1.7
/** * Returns a hash code value for the object. This method is * supported for the benefit of hash t ...
- Redis学习笔记(二)解析dump.rdb文件工具之redis-rdb-tools
https://github.com/sripathikrishnan/redis-rdb-tools 我这里使用docker搭建 docker搭建文档 https://rdbtools.com/do ...
- Entity Framework Code First 学习日记(1)精
我最近几天正在学习Entity Framework Code First.我打算分享一系列的学习笔记,今天是第一部分: 为什么要使用Code First: 近 年来,随着domain driven d ...
- java实现《剑指offer》(二)11~20 更新中
11.二进制中1的个数 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. (1)最优解 public class Solution { public int NumberOf1(int ...