Kaldi的delta特征
Delta特征是将mfcc特征(13维)经过差分得到的
它是做了一阶二阶的差分
提取的mfcc特征是13维的
然后通过delta就变成了39维
一阶差分:
D(P(t))=P(t)-P(t-1)
二阶差分:
D(D(P(t)))=(P(t)-P(t-1))-(P(t-1)-P(t-2))
Delta=Δ=差分
在
voxforge/s5/run.sh:116
rm/s5/run.sh:80
vystadial_cz/s5/run.sh:82
都注释了下一行的训练使用delta+delta-delta特征
在这之前,都运行了
steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" \
--use-graphs true <data-dir> <lang-dir> <src-dir> <align-dir>
"--use-graphs=true"意思是,使用 <src-dir>中的train graph(在fsts.JOB.gz中)
如果不加上,则默认"use-graphs=false",即用<src-dir>中的tree, final.mdl输入搭配compile-train-graph中生成训练的fst(train graph)
steps/train_deltas.sh是训练一个delta+delta-delta三音素系统(模型)
steps/align_si.sh对delta特征进行apply-cmvn, add-deltas
对lda特征进行apply-cmvn, splice-feats(可选), 用final.mat进行transform-feats
- delta特征与splice特征的区别
2017/5/20 16:23
[chick](616310753) 16:09:17
delte是显式给出差分
splice是在时间上作扩展
包含了差分信息
但是不是显式给出的,在学习中可能学习不到差分知识,可能学习到别的知识
语音研究生求南(287568706) 16:09:58
delta是同一帧复制多次吗?
[chick](616310753) 16:10:11
上一帧-当前帧
语音识别原理介绍_V1.3_1034.pdf
分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须 将波形作变换。常见的一种变换方法是提取 MFCC 特征,把每一帧波形变成一 个12维向量。这12个点是根据人耳的生理特性提取的,可以理解为这12个点包含 了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很 多细节,比如差分、均值方差规整、高斯化、降维去冗余等,声学特征也不止有 MFCC 这一种,具体就不详述了。
Kaldi的delta特征的更多相关文章
- [转]kaldi特征和模型空间转换
转:http://blog.csdn.net/shmilyforyq/article/details/76807431 博主话:这篇博客是对kaldi官网中Feature and model-spac ...
- Kaldi的BaseLine训练过程
steps/train_mono.sh --nj "$train_nj" --cmd "$train_cmd" data/train data/lang exp ...
- wakeup_train运行遇到的问题记录
运行前需要更改的地方: 1.matlab安装的路径以及matlab的license文件 2.噪声的路径;background.scp,以及噪声文件 3.run.sh文件中一处f ...
- Latent Representation Learning For Artificial Bandwidth Extension Using A Conditional Variational Auto-Encoder
博客作者:凌逆战 论文地址:https://ieeexplore.ieee.xilesou.top/abstract/document/8683611/ 地址:https://www.cnblogs. ...
- kaldi 运行voxforge例子
---------------------------------------------------------------------------------------------------- ...
- [转]Kaldi语音识别
转:http://ftli.farbox.com/post/kaldizhong-wen-shi-bie Kaldi语音识别 1.声学建模单元的选择 1.1对声学建模单元加入位置信息 2.输入特征 3 ...
- 论文笔记:语音情感识别(三)手工特征+CRNN
一:Emotion Recognition from Human Speech Using Temporal Information and Deep Learning(2018 InterSpeec ...
- kaldi - Online Audio Server(服务器客户端建立方法-旧版在线解码)
目录 一.服务器客户端识别系统建立方法 1. Command line to start the server(服务器端启动方式): 2. Command line to start the clie ...
- kaldi基于GMM的单音素模型 训练部分
目录 1. gmm-init-mono 模型初始化 2. compile-train-graghs 训练图初始化 3. align-equal-compiled 特征文件均匀分割 4. gmm-acc ...
随机推荐
- centos7安装saltstack
环境是Cenos7 saltstack-master:192.168.0.140 saltstack-minion:192.168.0.141 安装epel yum源 yum -y install e ...
- 第三十四节,目标检测之谷歌Object Detection API源码解析
我们在第三十二节,使用谷歌Object Detection API进行目标检测.训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检 ...
- 第二十七节,IOU和非极大值抑制
你如何判断对象检测算法运作良好呢?在这一节中,你将了解到并交比函数,可以用来评价对象检测算法. 一 并交比(Intersection over union ) 在对象检测任务中,你希望能够同时定位对象 ...
- ElasticSearch6.3.2------入门
先去官网下载,方便测试用的Windows版本的 都解压了 --- 启动ElasticSearch和Kibana [E:\elasticsearch-]$ .\bin\elasticsearch.bat ...
- java equals和hashcode方法
equals()方法比较两个对象的引用是否相同 hashcode()方法比较两个对象的哈希码是否相同
- Elastic 安装篇(1)
1.Elasticsearch下载安装 https://www.elastic.co/cn/downloads/elasticsearch 解压: 2.安装head https://github.co ...
- codesmith生成的结果页不显示,问题在于第一行的文件头
在于这里: TargetLanguage="C#",这个能增加cs的格式
- nginx+keepalived高可用web负载均衡
一:安装环境 准备2台虚拟机,都安装好环境 centos 7keepalived:vip: 192.168.1.112192.168.1.110 nginxip 192.168.1.109 maste ...
- 爬虫之requests请求库高级应用
1.SSL Cert Verification #证书验证(大部分网站都是https) import requests respone=requests.get('https://www.12306. ...
- 百度富文本ueditor使用小结
最近因工作需要使用了ueditor,根据自己的需求将开发使用时遇到的问题小结分享下. 1.可到官网根据自身情况下载最新版本,https://ueditor.baidu.com/website/ 2.h ...