http://acm.hdu.edu.cn/showproblem.php?pid=6304

题意

给出一个数列的定义,a[1]=a[2]=1,a[n]=a[n-a[n-1]]+a[n-1-a[n-2]](n>=3)。求前n项和,n<=1e18。

分析

一看就是得打表找规律或推公式的题目。

先把a[i]打出来: 1 1 2 2 3 4 4 4 5 6 6...

乍眼一看每个数字出现的次数有点意思,于是打出每个数出现次数:

数值   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

次数   2  2  1  3  1  2  1  4  1   2    1    3    1    2    1    5

感觉第一个1很不和谐啊,先忽略这个1看看:

数值   1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

次数   1  2  1  3  1  2  1  4  1   2    1    3    1    2    1    5

可以看到前2^i个数的出现次数是由前2^(i-1)个数复制两次,并把2^i的次数+1得到的。

这样就得到数值出现次数的规律了,设cnt[i]为前2^i个数的次数之和,那么cnt[i]=2*cnt[i-1]+1。

有了cnt[i],对于一个下标n,可以求出a[n]的值,相反也可以求出值为a[n]的第一个位置。

然后怎么求前n项和呢?把相同出现次数的值输出看看:

1-- 1,3,5,7,9....

2-- 2,6,10,14...

3-- 4,12,20,28...

4-- 8,24,40,56...

....

很明显的规律,对于次数k,对应数值形成一个首项为2^(k-1),公差为2^k的等差数列。这个等差数列的每个值都出现k次。

所以,可以枚举次数,计算以a[n]为上界的项数,再把这个等差数列的和*次数加到答案中。

需要注意,计算等差数列时不能把a[n]算进去,因为a[n]出现的次数在n的限制下是不完全的,需要另外计算,这时就用到上面计算的a[n]出现的第一个位置了,由此算出a[n]实际出现的次数,再加到答案中。

由于数据是ll级别,出现相乘时不要忘记先模一下。

其它细节看代码。

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;
const ll mod = 1e9 + ; ll cnt[],p[];
//预处理2^i和cnt[i]
void init(){
cnt[]=p[]=;
for(int i=;i<=;i++) cnt[i]=*cnt[i-]+,p[i]=*p[i-];
}
//计算a[n]的数值
ll caln(ll n){
if(n==) return ;//特殊处理
n--;//由于规律从实际的第二个开始计算
ll an = ;
for(int i=;i>=;i--){
while(cnt[i]<=n){
n-=cnt[i];
an+=p[i];
}
}
return an;
}
//根据a[n]计算最早出现的位置
ll gps(ll an){
if(an==) return ;
an--; //同上
ll pos=;
for(int i=;i>=;i--){
while(p[i]<=an){
an-=p[i];
pos+=cnt[i];
}
}
return pos+;
}
int main() {
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int T;
ll n;
scanf("%d",&T);
init();
ll _inv = ;//2的逆元
while(T--){
scanf("%lld",&n);
ll an = caln(n);
ll cnt = n - gps(an);//a[n]出现的实际次数
ll ans = ;
for(int i=;p[i-]<=an;i++){//枚举次数,终结条件为某个等差数列的首项大于a[n]
ll x1 = p[i-]; //首项
ll d = p[i]; //公差
//项数。注意,正常的项数应该是((an-x1)/d+1),但这里不能保证a[n]全部出现了,
//所以当((an-x1)%d==0)时说明a[n]位于当前的等差数列中,需要根据实际个数来计算,于是不+1
ll num = ((an-x1)%d==)?((an-x1)/d):((an-x1)/d+);
ll xn = x1 + (num-)*d; //尾项
ll sum = (x1%mod+xn%mod)%mod*(num%mod)%mod*_inv%mod; //等差数列前num项和
ans = (ans+i*sum%mod)%mod; //加入答案,共出现i次
if((an-x1)%d==)
ans=(ans+cnt*(an%mod)%mod)%mod; //a[n]位于此数列,特别计算一下。
}
printf("%lld\n",ans+);//由于计算中忽略了第一项1,最后加上
}
return ;
}

HDU - 6304(2018 Multi-University Training Contest 1) Chiaki Sequence Revisited(数学+思维)的更多相关文章

  1. 2018 杭电多校1 - Chiaki Sequence Revisited

    题目链接 Problem Description Chiaki is interested in an infinite sequence $$$a_1,a_2,a_3,...,$$$ which i ...

  2. hdu 4915 Parenthese sequence--2014 Multi-University Training Contest 5

    主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4915 Parenthese sequence Time Limit: 2000/1000 MS (Ja ...

  3. hdu 4902 Nice boat--2014 Multi-University Training Contest 4

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=4902 Nice boat Time Limit: 30000/15000 MS (Java/Othe ...

  4. hdu 4925 Apple Tree--2014 Multi-University Training Contest 6

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4925 Apple Tree Time Limit: 2000/1000 MS (Java/Others ...

  5. HDU校赛 | 2019 Multi-University Training Contest 6

    2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...

  6. HDU校赛 | 2019 Multi-University Training Contest 5

    2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...

  7. HDU校赛 | 2019 Multi-University Training Contest 4

    2019 Multi-University Training Contest 4 http://acm.hdu.edu.cn/contests/contest_show.php?cid=851 100 ...

  8. HDU校赛 | 2019 Multi-University Training Contest 3

    2019 Multi-University Training Contest 3 http://acm.hdu.edu.cn/contests/contest_show.php?cid=850 100 ...

  9. HDU校赛 | 2019 Multi-University Training Contest 2

    2019 Multi-University Training Contest 2 http://acm.hdu.edu.cn/contests/contest_show.php?cid=849 100 ...

随机推荐

  1. linux 开放80端口

    必须确保两块都开放 1.云服务器-->安全组开放 比如百度云服务器: 2.linux内置防火墙开放 注意:此处如果不设置开放,即时云端开放了也没用,如果同时存在  80 (拒绝) 80(允许)  ...

  2. Codeforces Round #432 (Div. 1, based on IndiaHacks Final Round 2017) D. Tournament Construction(dp + 构造)

    题意 一个竞赛图的度数集合是由该竞赛图中每个点的出度所构成的集合. 现给定一个 \(m\) 个元素的集合,第 \(i\) 个元素是 \(a_i\) .(此处集合已经去重) 判断其是否是一个竞赛图的度数 ...

  3. 安卓Q | 诸多本地文件找不到?应用文件存储空间沙箱化适配指导

    上期我们针对Android Q 版本中对设备存储空间进行的限制.新特性变更引发的兼容性问题及原因分析推出了<安卓 Q | 8大场景全面解析应用存储沙箱化>文章,本期文章我们将手把手指导各位 ...

  4. 聊聊jvm的CompressedClassSpace

    序本文主要研究一下jvm的CompressedClassSpace CompressedClassSpacejava8移除了permanent generation,然后class metadata存 ...

  5. Python将是人工智能时代的最佳编程语言

    Python将是人工智能时代的最佳编程语言 移动互联网取代PC互联网领跑在互联网时代的最前沿,Android和iOS一度成为移动互联网应用平台的两大霸主,成为移动开发者首选的两门技术,HTML5以其跨 ...

  6. 自学Aruba集锦

    自学Aruba集锦 01 自学Aruba之功率单位和相对单位 02 自学Aruba之无线频段---ISM频段及UNII频段 03 自学Aruba之2.4GHz及5GHz无线信道 04 自学Aruba之 ...

  7. 每天一个Linux命令(03):du命令

    du命令 今天找开发定位问题,看到他使用了这个命令,查看文件,之前知道df,所以今天的每天系列把这命令 du命令也是查看使用空间的,但是与df命令不同的是Linux du命令是对文件和目录磁盘使用的空 ...

  8. luogu3278/bzoj3323 多项式的运算 (splay)

    mulx的操作,其实就是给r+1的系数+=r的系数,然后删掉r,把l~r-1向右移一位,再插一个0到原来的位置 splay维护区间加和区间乘就好了 (一定要注意做事的顺序,一件事都做完了再去做别的,否 ...

  9. [FJOI2016]神秘数(脑洞+可持久化)

    题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...

  10. ORACLE报错和解决方案

    ORA-01034: ORACLE not available ORA-27101 出现ORA-01034和ORA-27101的原因是多方面的:主要是oracle当前的服务不可用,shared mem ...