原文链接https://www.cnblogs.com/zhouzhendong/p/CF781E.html

题目传送门 - CF781E

题意

  有一个矩形,宽为 w ,高为 h 。一开始会有 w 个球分别从高处的每一个位置开始下落。

  有 n 个挡板,每一个挡板有 4 个属性,分别是 u,L,R,s ,表示当前挡板的高度为 u ,横向覆盖的区间为 L,R ,如果球从高度大于 u+s 的地方开始下落到当前挡板,那么球会穿透当前挡板,否则球会分裂成两个,分别从该挡板的两边从新开始下落(如图的第一行),特殊地,当挡板的一段在边界上时,分裂得到的两个球都会从另一端下降(如图的第二行)。

  问最终地面上能收到多少个球。

  $w,n\leq 10^5,\ \ \  u,s,h\leq 10^9,\ \ 1\leq L\leq R\leq n$,保证每一行最多只有一个挡板,且不会有挡板两端都到达了边界。

    

题解

  首先,我们观察到如果直接 dp ,转移数就等于 挡板数×2+w (每一个挡板的两侧以及一开始投放的 w 个球)。

  关键在于如何找到一个球从每一个位置开始下落会在哪里分裂。

  我们来理一理思路:

  我们要找的挡板要满足以下条件:

    1. 高度小于当前高度。

    2. u+s 要大于等于当前高度。

    3. [L,R] 要包含当前横坐标。

    4. 在满足上述条件的情况下,使得 u 最大。

  显然可以发现可以树套树套树。但是这样显然不足以通过此题。

  然后我们发现只需要把挡板按照高度从低到高排序,然后依次操作就好了,这样只需要树套树。但是这样的空间复杂度仍然是凉凉的。

  于是,接下来是最重要的一步了!

  一个挡板的纵向影响区间是 [u,u+s] ,对于这一维,我们可以直接用单调栈维护。

  于是我们得到一个 线段树 + 单调栈的做法。可以通过本题。

  时间复杂度 $O(n\log n)$ 。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL read(){
LL x=0,f=1;
char ch=getchar();
while (!isdigit(ch)&&ch!='-')
ch=getchar();
if (ch=='-')
f=-1,ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x*f;
}
const int N=100005,mod=1e9+7;
int n,h,w;
struct Node{
int L,R,h,m,ans;
}a[N];
bool cmph(Node a,Node b){
return a.h<b.h;
}
vector <int> s[N<<2];
void build(int rt,int L,int R){
s[rt].push_back(1);
if (L==R)
return;
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
build(ls,L,mid);
build(rs,mid+1,R);
}
void Push(vector <int> &s,int x){
while (a[s.back()].m<a[x].m)
s.pop_back();
s.push_back(x);
}
void update(int rt,int L,int R,int xL,int xR,int d){
if (L>xR||R<xL)
return;
if (xL<=L&&R<=xR){
Push(s[rt],d);
return;
}
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
update(ls,L,mid,xL,xR,d);
update(rs,mid+1,R,xL,xR,d);
}
int query(vector <int> &s,int h){
while (a[s.back()].m<h)
s.pop_back();
return s.back();
}
int query(int rt,int L,int R,int x,int d){
int ans=query(s[rt],d);
if (L==R)
return ans;
int mid=(L+R)>>1,ls=rt<<1,rs=ls|1;
if (x<=mid)
return max(ans,query(ls,L,mid,x,d));
else
return max(ans,query(rs,mid+1,R,x,d));
}
int main(){
h=read(),w=read(),n=read();
for (int i=1;i<=n;i++){
a[i].h=read(),a[i].L=read(),a[i].R=read();
a[i].m=min(a[i].h+read(),(LL)h+1);
}
n++;
a[n].h=0,a[n].L=1,a[n].R=w,a[n].m=1.05e9;
sort(a+1,a+n+1,cmph);
a[1].ans=1;
for (int i=0;i<(N<<2);i++)
s[i].clear();
build(1,1,w);
for (int i=2;i<=n;i++){
if (a[i].L==1)
a[i].ans=2*a[query(1,1,w,a[i].R+1,a[i].h)].ans%mod;
else if (a[i].R==w)
a[i].ans=2*a[query(1,1,w,a[i].L-1,a[i].h)].ans%mod;
else
a[i].ans=(a[query(1,1,w,a[i].L-1,a[i].h)].ans
+a[query(1,1,w,a[i].R+1,a[i].h)].ans)%mod;
update(1,1,w,a[i].L,a[i].R,i);
}
int ans=0;
for (int i=1;i<=w;i++)
ans=(ans+a[query(1,1,w,i,h+1)].ans)%mod;
printf("%d",ans);
return 0;
}

  

Codeforces 781E Andryusha and Nervous Barriers 线段树 单调栈的更多相关文章

  1. CodeForces 781E Andryusha and Nervous Barriers 线段树 扫描线

    题意: 有一个\(h \times w\)的矩形,其中有\(n\)个水平的障碍.从上往下扔一个小球,遇到障碍后会分裂成两个,分别从障碍的两边继续往下落. 如果从太高的地方落下来,障碍会消失. 问从每一 ...

  2. Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)

    Codeforces 题面传送门 & 洛谷题面传送门 由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了 看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法. 首 ...

  3. 洛谷P4425 转盘 [HNOI/AHOI2018] 线段树+单调栈

    正解:线段树+单调栈 解题报告: 传送门! 1551又是一道灵巧连题意都麻油看懂的题,,,,所以先解释一下题意好了,,,, 给定一个n元环 可以从0时刻开始从任一位置出发 每次可以选择向前走一步或者在 ...

  4. 线段树+单调栈+前缀和--2019icpc南昌网络赛I

    线段树+单调栈+前缀和--2019icpc南昌网络赛I Alice has a magic array. She suggests that the value of a interval is eq ...

  5. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

  6. [Codeforces1132G]Greedy Subsequences——线段树+单调栈

    题目链接: Codeforces1132G 题目大意:给定一个序列$a$,定义它的最长贪心严格上升子序列为$b$满足若$a_{i}$在$b$中则$a_{i}$之后第一个比它大的也在$b$中.给出一个数 ...

  7. BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)

    BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...

  8. AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)

    题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...

  9. cdqz2017-test10-rehearsal(CDQ分治&可持久化线段树&单调栈)

    题意: 给出n个三元组 e[i]=(si,ti,wi) 第i个三元组的价值为 Σ w[j] ,j 满足以下4个条件: 1.j<i 2.tj<ti 3.sj<si 4.不存在j< ...

随机推荐

  1. freeswitch反注册记录

    应用情景: 使用阿里服务器,落地使用本地的模拟线路(O口网关). 1.FreeSWITCH 服务器开一个账号,比如 5000 internal , O口 SIP设置页面按照网关注册 5000 的账号信 ...

  2. HDU 5297

    用x ^ (1 / n) 来求个数,容斥原理 , Num会向后移动, 迭代到不再变化,退出循环 #include<iostream> #include<cstdio> #inc ...

  3. 如何在Mac 终端上Git 项目的一次常规操作

    首先,Git的工作流是怎样的? 你的本地仓库由 git 维护的三棵“树”组成. 第一个是你的 工作目录,它持有实际文件: 第二个是 暂存区(Index),它像个缓存区域,临时保存你的改动: 最后是 H ...

  4. mabytis的xml一些写法

    1.jdbcType=TIMESTAMP 而不是 jdbcType=DATETIME myabtis 3.4.6 版本jar包中:jdbcType枚举: ARRAY(Types.ARRAY), BIT ...

  5. FTP判断ftp上是否有文件目录,没有就创建的具体案例

    /// <summary> /// 判断ftp上是否有指定的文件目录,没有创建 /// </summary> /// <param name="ftpPath& ...

  6. 高性能MySQL(第3版) 中文PDF带目录清晰版

    下载地址: <高性能MySQL(第3版)>编辑推荐:"只要你不敢以MySQL专家自诩,又岂敢错过这本神书?""一言以蔽之,写得好,编排得好,需要参考时容易到爆 ...

  7. JPA核心类与使用

    点击访问:JPA环境配置(一) Persistence: Persistence用于获取EntityManagerFactory实例,这个类中包含一个名为createEntityManagerFact ...

  8. JSP Filters(过滤器)

    Filter是拦截Request请求的对象:在用户的请求访 问资源前处理ServletRequest以及ServletResponse,它可 用于日志记录.加解密.Session检查.图像文件保护 等 ...

  9. mysql 各种关系代数的使用

    连接(JOIN) 选择运算表示为: R⋈S ,其中R和S为不同的两个关系 连接运算是选取两个指定关系中的属性满足给定条件的元祖连接在一起来组成一个新的关系 数学形式: JOIN 关系名1 AND 关系 ...

  10. hdu2121 最小树形图的虚根

    /* 最小树形图的第二题,终于有了一些理解 具体看注释 */ /* 无定根的最小树形图 建立虚root 每次只找最短的那条入边 最小树形图理解: 第一步:寻找最短弧集E:扫一遍所有的边,找到每个点权值 ...