BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学
原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html
题目传送门 - BZOJ3622
题意
给定两个序列 $a,b$ ,各包含 $n$ 个数字。
现在给 $a$ 中元素与 $b$ 中元素配对。问使得所有配对中 $a_?>b_?$ 的个数比 $a_?<b_?$ 的个数恰好多 $k$ 的方案总数。
答案对 $10^9+9$ 取模,保证 $a$ 和 $b$ 中的所有数字互不相同。
$n\leq 2000$
题解
首先闭着眼睛排个序。
然后,我们发现一个非常好的性质:如果要使得 $a_i$ 的配对 $b_?$ 满足 $a_i>b_?$ 那么,满足 $1\leq ?\leq c_i$ ,其中 $c_i$ 表示在 $1\leq j\leq n$ 中满足 $b_j<a_i$ 的最大 $j$ 值。
我们先把问题转化一下,变成求恰好得到 $x$ 个 $a_?>b_?$ 的方案数。那么显然 $x=\cfrac{n+k}{2}$ 。如果 $x$ 不是整数,那么答案显然是 $0$ 。
下面说的满足条件是指 $a_?>b_?$ 。
于是我们考虑动态规划。
记 $f_{i,j}$ 表示在 $a_1,a_2,...,a_i$ 中选择 $j$ 个,匹配比他小的 $b_i$ 的方案数。
那么我们可以轻松确定转移方程:
$$f_{i,j}=f_{i-1,j}+f_{i-1,j-1}\times \max(c_i-j+1,0)$$
我们假设 $f_i=f_{n,i}$ ,并设 $g_i$ 为配对所有的元素,恰好有 $i$ 个满足条件的方案数。
于是下式成立:
$$f_i=\sum_{j=i}^n\binom{j}{i}g_j$$
回忆一下 $f$ 的定义,$f_i$ 表示在 $n$ 个里面选择 $i$ 个匹配 $i$ 个满足条件的方案数。
考虑所有的最终情况。
满足条件个数为 $j$ 的总共有 $g_j$ 种。每一个这样的方案中选择的 $j$ 个数中,任选 $i$ 个,所得到的方案,都会对 $f_i$ 有贡献。
所以,$f_i=\sum_{j=0}^{n}\binom{j}{i}g_j=\sum_{j=i}^n\binom{j}{i}g_j$ 。
于是我们来用 $f$ 表示 $g$ 。
$$\begin{eqnarray*}g_k&=&\sum_{i=k}^{n}g_i\binom{i}{k}\sum_{j=k}^{i}(-1)^{j-k}\binom{i-k}{j-k} \\&=&\sum_{i=k}^{n}g_i\sum_{j=k}^{i}(-1)^{j-k}\binom{i}{k}\binom{i-k}{j-k}\\&=&\sum_{i=k}^{n}g_i\sum_{j=k}^{i}(-1)^{j-k}\binom{i}{j}\binom{j}{k}\\&=&\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k}\sum_{j=i}^{n}g_j\binom{j}{i}\\&=&\sum_{i=k}^{n}f_i(-1)^{i-k}\binom{i}{k}\end{eqnarray*}$$
然后按照这个公式算一算就可以了。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=2005,mod=1e9+9;
int n,k,a[N],b[N],c[N];
int C[N][N],Fac[N];
int f[N][N];
int main(){
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
for (int i=1;i<=n;i++)
scanf("%d",&b[i]);
sort(a+1,a+n+1),sort(b+1,b+n+1);
for (int i=1;i<=n;i++)
for (c[i]=c[i-1];c[i]<n&&b[c[i]+1]<a[i];c[i]++);
for (int i=Fac[0]=1;i<=n;i++)
Fac[i]=1LL*Fac[i-1]*i%mod;
for (int i=0;i<=n;i++)
C[i][i]=C[i][0]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
for (int i=0;i<=n;i++)
f[i][0]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
f[i][j]=(1LL*f[i-1][j-1]*max(c[i]-j+1,0)+f[i-1][j])%mod;
int ans=0,x=(n+k)/2;
if (x*2!=n+k){
puts("0");
return 0;
}
for (int i=x;i<=n;i++)
ans=(1LL*f[n][i]*C[i][x]%mod*Fac[n-i]*((i-x+1)%2*2-1)+ans)%mod;
ans=(ans+mod)%mod;
printf("%d",ans);
return 0;
}
BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学的更多相关文章
- [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理
bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...
- bzoj3622已经没有什么好害怕的了
bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】
题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...
- bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1033 Solved: 480[Submit][Status][ ...
- BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)
显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数.直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数.设第i行从1~a[i]列都是1且a[i]+ ...
- BZOJ3622 已经没有什么好害怕的了
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
- 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
- 洛谷 P4859 && BZOJ3622: 已经没有什么好害怕的了
题目描述 给出 \(n\) 个数 \(a_i\) ,以及 \(n\) 个数 \(b_i\) ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) . ...
随机推荐
- 优秀员工的修炼——通往专家、管理之路
(一)好员工的素质 好员工的类型有很多种,尝试着抽象出一个定义吧--好员工是那些主管分配其任务放心.同事喜欢与其共事.对自己工作负责.志在自我提升和价值实现的人.知识经济时代,好员工首先是做好自我管理 ...
- Mysql 数据库增删改查
数据插入 语法:INSERT INTO Table_name(field1,field2……fieldN) values(value1,vlaue2,…valueN) 单行插入用户类型 INSERT ...
- 使用Gitblit 在Windows上部署Git Server
Windows平台下Git服务器搭建 首先要下载Java JDK,安装完成后设置环境变量,先把java环境配好,接下来才是下面的gitblit.关于java环境配置请看上一篇文章 gitblit下载 ...
- lua内存监测和回收
以下来自书籍<Cocos2d-x之Lua核心编程> 1.----------------------------------------- 若想查看程序当前的内存占用情况,可以使用Lua提 ...
- Python 三种过滤去重方法
SET集合去重 set(1,1,2) REDIS去重 布隆过滤器
- bzoj3730 震波 [动态点分治,树状数组]
传送门 思路 如果没有强制在线的话可以离线之后CDQ分治随便搞. 有了强制在线之后--可能可以二维线段树?然而我不会算空间. 然后我们莫名其妙地想到了动态点分治,然后这题就差不多做完了. 点分树有一个 ...
- Codeforces 993E Nikita and Order Statistics [FFT]
洛谷 Codeforces 思路 一开始想偏想到了DP,后来发现我SB了-- 考虑每个\(a_i<x\)的\(i\),记录它前一个和后一个到它的距离为\(L_i,R_i\),那么就有 \[ an ...
- Confluence 6 附件存储选项
在早期的 Confluence 版本中,我们允许存储附件到 WebDav 或者 Confluence 数据库中.针对新的 Confluence 安装,我们不再支持这 2 种存储了. 本地文件系统 在默 ...
- Confluence 6 手动备份
Confluence 的 Attachment Storage Configuration 可以配置 Confluence 将附件存储在 home directory,或者是存储在数据库中. Dat ...
- iOS 运行时使用(交换两个方法)
举例 在创建了如下代码 NSString *str=nil; NSURL *url =[NSURL URLWithString:str]; NSLog(@"%@",url); 但是 ...