http://msdn.microsoft.com/library/ee354180.aspx

Steps:

Designing a Service Contract

Implementing a WCF Service

  • What instancing mode will be used?
  • What concurrency mode will be used?
  • Are transactions supported for this service type?
  • Should the service join a particular synchronization context?

InstanceContextMode =>The default is PerSession which is typically not the desired setting.

Hosting a WCF Service

  • How many endpoints will be exposed for the service type? What protocols will be supported?
  • Will a metadata exchange endpoint be provided?
  • Which service behaviors and endpoint behaviors will be configured?
  • What features will be configured programmatically?
  • What features will be configured declaratively?
  • Will a custom  and  be useful to encapsulate common initialization features?

Generating Proxies

  • How will collections and arrays be handled?
  • Is a consistent object model desired to match the service implementation?
  • How will exceptions and faulted channels be managed?
  • Are there multithreading considerations?
  • Is UI responsiveness a concern?

WCF Basic Concept的更多相关文章

  1. React Tutorial: Basic Concept Of React Component---babel, a translator

    Getting started with react.js: basic concept of React component 1 What is React.js React, or React.j ...

  2. 基本概率分布Basic Concept of Probability Distributions 8: Normal Distribution

    PDF version PDF & CDF The probability density function is $$f(x; \mu, \sigma) = {1\over\sqrt{2\p ...

  3. 基本概率分布Basic Concept of Probability Distributions 7: Uniform Distribution

    PDF version PDF & CDF The probability density function of the uniform distribution is $$f(x; \al ...

  4. 基本概率分布Basic Concept of Probability Distributions 6: Exponential Distribution

    PDF version PDF & CDF The exponential probability density function (PDF) is $$f(x; \lambda) = \b ...

  5. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  6. 基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

    PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two p ...

  7. 基本概率分布Basic Concept of Probability Distributions 3: Geometric Distribution

    PDF version PMF Suppose that independent trials, each having a probability $p$, $0 < p < 1$, o ...

  8. 基本概率分布Basic Concept of Probability Distributions 2: Poisson Distribution

    PDF version PMF A discrete random variable $X$ is said to have a Poisson distribution with parameter ...

  9. 基本概率分布Basic Concept of Probability Distributions 1: Binomial Distribution

    PDF下载链接 PMF If the random variable $X$ follows the binomial distribution with parameters $n$ and $p$ ...

随机推荐

  1. 兼容古董级IE小结

    IE6已经死亡,当然7,8,9,10也挂掉了.微软对IE11更下了狠手,对其停止了更新.以为前端就可以安安心心地写代码了.可是就是有些顽固分子,竟然用的还是IE6,尊崇客户至上的原则,就恶心着给他兼容 ...

  2. 【现代程序设计】homework-04

    题目要求: 第四次作业,构造一个方阵将指定单词填入 stage 1:每个单词只出现1次,且八个方向各至少有两个单词 stage 2:矩阵长宽相等 stage 3:方阵的四个角都要参与单词的构建 算法思 ...

  3. Java中的Timer和TimerTask在Android中的用法(转)

    转自:http://blog.csdn.net/zuolongsnail/article/details/8168689 在开发中我们有时会有这样的需求,即在固定的每隔一段时间执行某一个任务.比如UI ...

  4. 小甲鱼PE详解之区块描述、对齐值以及RVA详解(PE详解06)

    各种区块的描述: 很多朋友喜欢听小甲鱼的PE详解,因为他们觉得课堂上老师讲解的都是略略带过,绕得大家云里雾里~刚好小甲鱼文采也没课堂上的教授讲的那么好,只能以比较通俗的话语来给大家描述~ 通常,区块中 ...

  5. eclipse中编译时enum出现cannot be resolved to a type错误

    eclipse中编译时enum出现cannot be resolved to a type错误 通常是因为eclise使用的jdk版本的问题...默认是使用的是jdk1.5 应该去选择成jdk1.6或 ...

  6. Linux常用命令_(文件操作)

    对文件的操作主要有以下命令: touch.cp.rm.mv.ln.mkdir.rmdir

  7. 阿牛的EOF牛肉串[HDU2047]

    阿牛的EOF牛肉串 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  8. BZOJ1092 : [SCOI2003]蜘蛛难题

    按时间一步一步模拟. 每一次,首先将所有没有水但是可以被灌到水的管子标记为有水,然后求出有水的管子里水面高度的最小值. 如果$a$号管有水且最小值为$b$,那么说明此时蜘蛛碰到了水. 如果有管子溢出且 ...

  9. BZOJ1077 : [SCOI2008]天平

    首先通过差分约束系统建图,用Floyed算法求出任意两个砝码差值的上下界. 然后暴力枚举放在右边的砝码C,D,通过与A,B差值的上下界分类讨论统计方案. 时间复杂度$O(N^3)$. #include ...

  10. BZOJ3831 : [Poi2014]Little Bird

    设f[i]表示到i最少休息次数,f[i]=min(f[j]+(h[j]<=a[i])),i-k<=j<i,单调队列优化DP #include<cstdio> #defin ...