Wormholes(Bellman-ford)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 33008 | Accepted: 12011 |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
Source
#include<stdio.h>
#include<string.h>
#define MAX 0x3f3f3f3f
struct path
{
int u , v , t ;
}pa[]; int d[] ;
int n , m , w ;
int s , e , t ;
int f ;
int cnt ; bool Bellman_ford ()
{
for (int i = ; i <= n ; i++)
d[i] = MAX ;
d[] = ;
bool flag ;
for (int i = ; i <= n ; i++) {// ' = ' 不能省
flag = ;
for (int j = ; j < cnt ; j++) {
if (d[pa[j].v] > d[pa[j].u] + pa[j].t) {
flag = ;
d[pa[j].v] = d[pa[j].u] + pa[j].t ;
}
}
if (flag)
return true ;
}
return false ;
} int main ()
{
//freopen ("a.txt" , "r" , stdin) ;
scanf ("%d" , &f) ;
while (f--) {
cnt = ;
scanf ("%d%d%d" , &n , &m , &w) ;
for (int i = ; i < m ; i++) {
scanf ("%d%d%d" , &s , &e , &t) ;
pa[cnt].u = s , pa[cnt].v = e , pa[cnt].t = t ;
cnt++ ;
pa[cnt].u = e , pa[cnt].v = s , pa[cnt].t = t ;
cnt++ ;
}
for (int i = ; i < w ; i++ , cnt++) {
scanf ("%d%d%d" , &s , &e , &t) ;
pa[cnt].u = s , pa[cnt].v = e , pa[cnt].t = -t ;
}
if (Bellman_ford())
puts ("NO") ;
else
puts ("YES") ;
}
return ;
}
Wormholes(Bellman-ford)的更多相关文章
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- POJ 3259 Wormholes Bellman题解
版权声明:本文作者靖心,靖空间地址:http://blog.csdn.net/kenden23/.未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...
- poj3259 bellman——ford Wormholes解绝负权问题
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 35103 Accepted: 12805 Descr ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- poj1860 兑换货币(bellman ford判断正环)
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...
随机推荐
- 记一次w3wp占用CPU过高的解决过程(Dictionary和线程安全)
项目上线以来一直存在一个比较揪心的问题,和一个没有信心处理的BUG,那就是在应用程序启动时有可能会导致cpu跑满99%或持续在一个值如50%左右,这样一来对服务器的压力是非常大的,经常出现服务器无法远 ...
- Oracle备份数据库
1.前言 工作中数据库备份是一个很重要的事情,难免有时候一个不小心就会误操作,造成无法挽回的措施.在昨天的工作中,我们的一个产品经理在操作定制端的时候一个误操作,清空了几张表的数据同时还删除了几张系统 ...
- (旧)子数涵数·PS ——素描效果
一.准备素材(均为在百度上下载的) 二.打开ps,并在ps中打开第一张素材 三.复制图层(好习惯) 四.去色将图像变成黑白,图像->调整->去色,快捷键为Ctrl+Shift+U 五,复制 ...
- [BZOJ 1085][SCOI2005]骑士精神(IDA*)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1085 分析: 首先第一感觉是宽搜,但是空间需要8^15*5*5,明显不够,又鉴于最大深 ...
- [c#基础]堆和栈
前言 堆与栈对于理解.NET中的内存管理.垃圾回收.错误和异常.调试与日志有很大的帮助.垃圾回收的机制使程序员从复杂的内存管理中解脱出来,虽然绝大多数的C#程序并不需要程序员手动管理内存,但这并不代表 ...
- 一款轻量级移动web开发框架
本帖最后由 yangzhu230 于 2013-9-11 00:39 编辑 如果我说要推荐zepto你肯定说“切,这地球人都知道,又一个标题党” 不卖关子,开门见山我推荐的是[百度]的GMU GMU是 ...
- 我眼中的Android IDE
我作为一个Android小白,首先跟Android打交道的就是它的IDE(Integrated Development Environment,集成开发环境)了. 记得刚开始时是从图书馆借了本Andr ...
- visual studio各个版本的差异
- The Honeynet ProjectThe Honeynet Project
catalogue . 蜜罐基本概念 . Kippo: SSH低交互蜜罐安装.使用 . Dionaea: 低交互式蜜罐框架部署 . Thug . Amun malware honeypots . Gl ...
- Ubuntu系统启动过程详解
作者:杨硕,华清远见嵌入式学院讲师. 一. Ubuntu的启动流程 ubuntu的启动流程和我们熟知的RedHat的启动方式有所区别. RedHat的启动过程如下图: 这是我们熟知的linux启动流程 ...