原文:http://blog.csdn.net/abcjennifer/article/details/7691571

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning中Andrew老师的讲解。(https://class.coursera.org/ml/class/index

第一章-------单参数线性回归 Linear Regression with one variable

(一)、Cost Function

线性回归是给出一系列点假设拟合直线为h(x)=theta0+theta1*x, 记Cost Function为J(theta0,theta1)

之所以说单参数是因为只有一个变量x,即影响回归参数θ1,θ0的是一维变量,或者说输入变量只有一维属性。

下图中为简化模式,只有theta1没有theta0的情况,即拟合直线为h(x)=theta1*x

左图为给定theta1时的直线和数据点×

右图为不同theta1下的cost function J(theta1)

cost function plot:

当存在两个参数theta0和theta1时,cost function是一个三维函数,这种样子的图像叫bowl-shape function

将上图中的cost function在二维上用不同颜色的等高线映射为如下右图,可得在左图中给定一个(theta0,theta1)时又图中显示的cost function.

我们的目的是最小化cost function,即上图中最后一幅图,theta0=450,theta1=0.12的情况。

(二)、Gradient descent

gradient descent是指梯度下降,为的是将cost funciton 描绘出之后,让参数沿着梯度下降的方向走,并迭代地不断减小J(theta0,theta1),即稳态。

每次沿着梯度下降的方向:

参数的变换公式:其中标出了梯度(蓝框内)和学习率(α):

gradient即J在该点的切线斜率slope,tanβ。下图所示分别为slope(gradient)为正和负的情况:

同时更新theta0和theta1,左边为正解:

关于学习率:

α太小:学习很慢;                                                             α太大:容易过学习

所以如果陷入局部极小,则slope=0,不会向左右变换

本图表示:无需逐渐减小α,就可以使下降幅度逐渐减小(因为梯度逐渐减小):

求导后:

由此我们得到:

其中x(i)表示输入数据x中的第i组数据

Stanford机器学习---第一讲. Linear Regression with one variable的更多相关文章

  1. 机器学习笔记1——Linear Regression with One Variable

    Linear Regression with One Variable Model Representation Recall that in *regression problems*, we ar ...

  2. 李宏毅老师机器学习第一课Linear regression

    机器学习就是让机器学会自动的找一个函数 学习图谱: 1.regression example appliation estimating the combat power(cp) of a pokem ...

  3. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  5. Andrew Ng机器学习 一: Linear Regression

    一:单变量线性回归(Linear regression with one variable) 背景:在某城市开办饭馆,我们有这样的数据集ex1data1.txt,第一列代表某个城市的人口,第二列代表在 ...

  6. 机器学习笔记-1 Linear Regression(week 1)

    1.Linear Regression with One variable Linear Regression is supervised learning algorithm, Because th ...

  7. Andrew Ng机器学习编程作业: Linear Regression

    编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...

  8. 【cs229-Lecture2】Linear Regression with One Variable (Week 1)(含测试数据和源码)

    从Ⅱ到Ⅳ都在讲的是线性回归,其中第Ⅱ章讲得是简单线性回归(simple linear regression, SLR)(单变量),第Ⅲ章讲的是线代基础,第Ⅳ章讲的是多元回归(大于一个自变量). 本文的 ...

  9. MachineLearning ---- lesson 2 Linear Regression with One Variable

    Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x ...

随机推荐

  1. 关于 jquery select2 多个关键字 模糊查询的解决方法

    select2 只针对 元素的text()进行匹配,实际开发过程中可能会存在通过id 或者特殊编码进行 多关键字匹配. 改动了下源码:红色为改动部分. process=function(element ...

  2. bluebird

    nodejs-使用request和bluebird编写的http请求模块   http://blog.csdn.net/o6875461/article/details/44594545

  3. js验证函数摘录

    /**本文摘自:http://www.cnblogs.com/rob0121/articles/1776298.html * js各种表单数据验证 */ /********************** ...

  4. [BZOJ1876][SDOI2009]superGCD(高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1876 分析: 以为辗转相减会TLE呢……但是好像没这个数据……就这么水过去了…… 辗转 ...

  5. 《TCP/IP详解卷1:协议》第17、18章 TCP:传输控制协议(1)-读书笔记

    章节回顾: <TCP/IP详解卷1:协议>第1章 概述-读书笔记 <TCP/IP详解卷1:协议>第2章 链路层-读书笔记 <TCP/IP详解卷1:协议>第3章 IP ...

  6. 第四课:seajs的模块编译_compile过程

    最近比较闲,我就讲下seajs的模块编译_compile过程. 这里紧接着第三课的例子来讲解.首先是a.js的编译 Module.prototype._compile = function() { 1 ...

  7. HTML DOM 基础

    $. HTML DOM 定义了访问和操作 HTML 文档的标准方法.  DOM 是 W3C(万维网联盟)的标准. $. DOM树. $. W3C 文档对象模型 (DOM) 是中立于平台和语言的接口,它 ...

  8. Qt无边框,可移动窗口

    QPoint dragPosition; void MainWindow::mousePressEvent(QMouseEvent *event) { if(event->button()==Q ...

  9. Java基础-四要素之一《封装》

    封装从字面上来理解就是包装的意思,专业点就是信息隐藏,是指利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能地隐藏内部的细节,只保 ...

  10. 【Matplotlib】图例分开显示

    作图时图例往往都会出现一个图例框内,如果需要不同类型的图例分别显示,比如显示两个图例. 基本上,出现两个图例的话,需要调用两次 legend .第一次调用,你需要将图例保存到一个变量中,然后保存下来. ...