Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total number of unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys.
Rules for a valid pattern:
- Each pattern must connect at least m keys and at most n keys.
- All the keys must be distinct.
- If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed.
- The order of keys used matters.

Explanation:
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
Invalid move: 4 - 1 - 3 - 6
Line 1 - 3 passes through key 2 which had not been selected in the pattern.
Invalid move: 4 - 1 - 9 - 2
Line 1 - 9 passes through key 5 which had not been selected in the pattern.
Valid move: 2 - 4 - 1 - 3 - 6
Line 1 - 3 is valid because it passes through key 2, which had been selected in the pattern
Valid move: 6 - 5 - 4 - 1 - 9 - 2
Line 1 - 9 is valid because it passes through key 5, which had been selected in the pattern.
Example:
Given m = 1, n = 1, return 9.
分析: http://www.cnblogs.com/grandyang/p/5541012.html
这道题乍一看题目这么长以为是一个设计题,其实不是,这道题还是比较有意思的,起码跟实际结合的比较紧密。这道题说的是安卓机子的解锁方法,有9个数字键,如果密码的长度范围在[m, n]之间,问所有的解锁模式共有多少种,注意题目中给出的一些非法的滑动模式。那么我们先来看一下哪些是非法的,首先1不能直接到3,必须经过2,同理的有4到6,7到9,1到7,2到8,3到9,还有就是对角线必须经过5,例如1到9,3到7等。我们建立一个二维数组jumps,用来记录两个数字键之间是否有中间键,然后再用一个一位数组visited来记录某个键是否被访问过,然后我们用递归来解,我们先对1调用递归函数,在递归函数中,我们遍历1到9每个数字next,然后找他们之间是否有jump数字,如果next没被访问过,并且jump为0,或者jump被访问过,我们对next调用递归函数。数字1的模式个数算出来后,由于1,3,7,9是对称的,所以我们乘4即可,然后再对数字2调用递归函数,2,4,6,9也是对称的,再乘4,最后单独对5调用一次,然后把所有的加起来就是最终结果了,参见代码如下:
public class Solution {
public int numberOfPatterns(int m, int n) {
// Skip array represents number to skip between two pairs
int skip[][] = new int[][];
skip[][] = skip[][] = ;
skip[][] = skip[][] = ;
skip[][] = skip[][] = ;
skip[][] = skip[][] = ;
skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = ;
boolean visited[] = new boolean[];
int rst = ;
// DFS search each length from m to n
for (int i = m; i <= n; ++i) {
rst += DFS(visited, skip, , i - ) * ; // 1, 3, 7, 9 are symmetric
rst += DFS(visited, skip, , i - ) * ; // 2, 4, 6, 8 are symmetric
rst += DFS(visited, skip, , i - ); //
}
return rst;
}
// cur: the current position
// remain: the steps remaining
int DFS(boolean visited[], int[][] skip, int cur, int remain) {
if (remain < ) return ;
if (remain == ) return ;
visited[cur] = true;
int rst = ;
for (int i = ; i <= ; ++i) {
// If visited[i] is not visited and (two numbers are adjacent or skip number is already visited)
if (!visited[i] && (skip[i][cur] == || (visited[skip[i][cur]]))) {
rst += DFS(visited, skip, i, remain - );
}
}
visited[cur] = false;
return rst;
}
}
Reference:
http://massivealgorithms.blogspot.com/2016/06/leetcode-351-android-unlock-patterns.html
Android Unlock Patterns的更多相关文章
- [LeetCode] Android Unlock Patterns 安卓解锁模式
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- Leetcode: Android Unlock Patterns
Given an Android 3x3 key ≤ m ≤ n ≤ , count the total number of unlock patterns of the Android lock s ...
- [Swift]LeetCode351. 安卓解锁模式 $ Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- [LeetCode] 351. Android Unlock Patterns 安卓解锁模式
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- LC 351. Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- 351. Android Unlock Patterns
这个题我真是做得想打人了卧槽. 题目不难,就是算组合,但是因为是3乘3的键盘,所以只需要从1和2分别开始DFS,结果乘以4,再加上5开始的DFS就行了. 问题是这个傻逼题目的设定是,从1到8不需要经过 ...
- LeetCode All in One 题目讲解汇总(持续更新中...)
终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
随机推荐
- ibatis中的$和#的区别
介绍 在Ibatis中我们使用SqlMap进行Sql查询时需要引用参数,在参数引用中遇到的符号#和$之间的区分为,#可以进行与编译,进行类型匹配,而$不进行数据类型匹配,例如: select * fr ...
- 【ZOJ 3844】Easy Task
题意 每次把序列中最大的数a的一个和最小的数b的一个变成a-b.求最后是否能使序列里的数全部相同,能则输出这个相同的数. 分析 一定是有解的,不断减少最大数的个数,最大数减少为0个时,就是减少了不同数 ...
- 修改Oracle权限的SQL及常见错误
1.在cmd命令中进入sqlplus:相应的在DOS命令下执行:(1)set ORACLE_SID = $INSTANCE_NAME(2)sqlplus /nolog(3)connect user/p ...
- BZOJ-1012[JSOI2008]最大数maxnumber 线段树区间最值
这道题相对简单下面是题目: 1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MB Submit: 6542 Solve ...
- Exceptionless 本地部署
免费开源分布式系统日志收集框架 Exceptionless 前两天看到了这篇文章,亲身体会了下,确实不错,按照官方的文档试了试本地部署,折腾一番后终于成功,记下心得在此,不敢独享. 本地部署官方wik ...
- IOS基础之 (十五)知识点
一 SEL 1. 方法的存储位置 每个类的方法地址列表都存储在类对象中. 每个方法都有一个与之对应的SEL类型的对象. 根据一个SEL对象就可以找到方法的地址,进而调用方法. Person.h #im ...
- MyEclipse使用SVN进行项目版本控制
一.搭建SVN服务器. 例如,使用VisualSVN Server,下载后安装. (1)在Repositories(版本库)上右击,新建Repository,选择Regular FSFS reposi ...
- chrome 阻止跨域操作的解决方法 --disable-web-security
做chrome插件时,遇到https页面上请求htttp页面资源时被blocked的问题,初苦寻解决方法未果,最后找到: 给chrome加上 --disable-web-security 参数
- Java基础之理解Annotation(与@有关,即是注释)
Java基础之理解Annotation 一.概念 Annontation是Java5开始引入的新特征.中文名称一般叫注解.它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata) ...
- TFS2008 安装图解(详细版本)(转载)
由于公司准备上TFS,最近开始学习搭建TFS环境,并为同事讲解TFS的使用,在虚拟 机中搭建测试环境,遇到了很多问题,总结成一篇博客,跟大家交流一下: 我是从微软公司官方网站下载的TFS 2008 1 ...