Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total number of unlock patterns of the Android lock screen, which consist of minimum of m keys and maximum n keys.
Rules for a valid pattern:
- Each pattern must connect at least m keys and at most n keys.
- All the keys must be distinct.
- If the line connecting two consecutive keys in the pattern passes through any other keys, the other keys must have previously selected in the pattern. No jumps through non selected key is allowed.
- The order of keys used matters.

Explanation:
| 1 | 2 | 3 |
| 4 | 5 | 6 |
| 7 | 8 | 9 |
Invalid move: 4 - 1 - 3 - 6
Line 1 - 3 passes through key 2 which had not been selected in the pattern.
Invalid move: 4 - 1 - 9 - 2
Line 1 - 9 passes through key 5 which had not been selected in the pattern.
Valid move: 2 - 4 - 1 - 3 - 6
Line 1 - 3 is valid because it passes through key 2, which had been selected in the pattern
Valid move: 6 - 5 - 4 - 1 - 9 - 2
Line 1 - 9 is valid because it passes through key 5, which had been selected in the pattern.
Example:
Given m = 1, n = 1, return 9.
分析: http://www.cnblogs.com/grandyang/p/5541012.html
这道题乍一看题目这么长以为是一个设计题,其实不是,这道题还是比较有意思的,起码跟实际结合的比较紧密。这道题说的是安卓机子的解锁方法,有9个数字键,如果密码的长度范围在[m, n]之间,问所有的解锁模式共有多少种,注意题目中给出的一些非法的滑动模式。那么我们先来看一下哪些是非法的,首先1不能直接到3,必须经过2,同理的有4到6,7到9,1到7,2到8,3到9,还有就是对角线必须经过5,例如1到9,3到7等。我们建立一个二维数组jumps,用来记录两个数字键之间是否有中间键,然后再用一个一位数组visited来记录某个键是否被访问过,然后我们用递归来解,我们先对1调用递归函数,在递归函数中,我们遍历1到9每个数字next,然后找他们之间是否有jump数字,如果next没被访问过,并且jump为0,或者jump被访问过,我们对next调用递归函数。数字1的模式个数算出来后,由于1,3,7,9是对称的,所以我们乘4即可,然后再对数字2调用递归函数,2,4,6,9也是对称的,再乘4,最后单独对5调用一次,然后把所有的加起来就是最终结果了,参见代码如下:
public class Solution {
public int numberOfPatterns(int m, int n) {
// Skip array represents number to skip between two pairs
int skip[][] = new int[][];
skip[][] = skip[][] = ;
skip[][] = skip[][] = ;
skip[][] = skip[][] = ;
skip[][] = skip[][] = ;
skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = skip[][] = ;
boolean visited[] = new boolean[];
int rst = ;
// DFS search each length from m to n
for (int i = m; i <= n; ++i) {
rst += DFS(visited, skip, , i - ) * ; // 1, 3, 7, 9 are symmetric
rst += DFS(visited, skip, , i - ) * ; // 2, 4, 6, 8 are symmetric
rst += DFS(visited, skip, , i - ); //
}
return rst;
}
// cur: the current position
// remain: the steps remaining
int DFS(boolean visited[], int[][] skip, int cur, int remain) {
if (remain < ) return ;
if (remain == ) return ;
visited[cur] = true;
int rst = ;
for (int i = ; i <= ; ++i) {
// If visited[i] is not visited and (two numbers are adjacent or skip number is already visited)
if (!visited[i] && (skip[i][cur] == || (visited[skip[i][cur]]))) {
rst += DFS(visited, skip, i, remain - );
}
}
visited[cur] = false;
return rst;
}
}
Reference:
http://massivealgorithms.blogspot.com/2016/06/leetcode-351-android-unlock-patterns.html
Android Unlock Patterns的更多相关文章
- [LeetCode] Android Unlock Patterns 安卓解锁模式
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- Leetcode: Android Unlock Patterns
Given an Android 3x3 key ≤ m ≤ n ≤ , count the total number of unlock patterns of the Android lock s ...
- [Swift]LeetCode351. 安卓解锁模式 $ Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- [LeetCode] 351. Android Unlock Patterns 安卓解锁模式
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- LC 351. Android Unlock Patterns
Given an Android 3x3 key lock screen and two integers m and n, where 1 ≤ m ≤ n ≤ 9, count the total ...
- 351. Android Unlock Patterns
这个题我真是做得想打人了卧槽. 题目不难,就是算组合,但是因为是3乘3的键盘,所以只需要从1和2分别开始DFS,结果乘以4,再加上5开始的DFS就行了. 问题是这个傻逼题目的设定是,从1到8不需要经过 ...
- LeetCode All in One 题目讲解汇总(持续更新中...)
终于将LeetCode的免费题刷完了,真是漫长的第一遍啊,估计很多题都忘的差不多了,这次开个题目汇总贴,并附上每道题目的解题连接,方便之后查阅吧~ 477 Total Hamming Distance ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- LeetCode All in One题解汇总(持续更新中...)
突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...
随机推荐
- 修改ssh的访问端口号
[root@redis143 ~]# vim /etc/ssh/sshd_config 修改其中的:Port 10056 重启sshd服务 同时如果有防火墙规则的话,注意修改防火墙规则,或者关闭防火墙 ...
- 转:浅谈CSS在前端优化中一些值得注意的关键点
前端优化工作中要考虑的元素多种多样,而合理地使用CSS脚本可以在很大程度上优化页面的加载性能,以下我们就来浅谈CSS在前端优化中一些值得注意的关键点: 当谈到Web的“高性能”时,很多人想到的是页面加 ...
- mysql库大小
1.进入information_schema 数据库(存放了其他的数据库的信息) use information_schema; 2.查询所有数据的大小: select concat(round(su ...
- 【codevs1200】 NOIP2012—同余方程
codevs.cn/problem/1200/ (题目链接) 题意 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. Solution 这道题其实就是求${a~mod~b}$的逆元 ...
- Linux Communication Mechanism Summarize
目录 . Linux通信机制分类简介 . 控制机制 0x1: 竞态条件 0x2: 临界区 . Inter-Process Communication (IPC) mechanisms: 进程间通信机制 ...
- UVA12563Jin Ge Jin Qu hao(01背包)
紫书P274 题意:输入N首歌曲和最后剩余的时间t,问在保证能唱的歌曲数目最多的情况下,时间最长:最后必唱<劲歌金曲> 所以就在最后一秒唱劲歌金曲就ok了,背包容量是t-1,来装前面的歌曲 ...
- Spring学习8-Spring事务管理(注解式声明事务管理)
步骤一.在spring配置文件中引入<tx:>命名空间 <beans xmlns="http://www.springframework.org/schema/beans& ...
- How much training data do you need?
How much training data do you need? //@樵夫上校: 0. 经验上,10X规则(训练数据是模型参数量的10倍)适用与大多数模型,包括shallow networ ...
- ASP.NET版Memcached监控工具(转载)
在上一篇文章<使用Memcached提高.NET应用程序的性能>中周公讲述如何在.NET中使用Memcached来提高.NET应用程序的性 能.在实际的使用中有可能出现Memcached因 ...
- ProcDump
https://technet.microsoft.com/en-us/sysinternals/dd996900.aspx