01分数规划poj2728(最优比例生成树)
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 21766 | Accepted: 6087 |
Description
After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.
His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.
As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.
Input
Output
Sample Input
4
0 0 0
0 1 1
1 1 2
1 0 3
0
Sample Output
1.000
题意:有n个村庄,分别给出每个村庄的地理坐标(xi,yi)和海拔hi,要求在村庄之间修一些河道,使这些河道联通所有的村庄,不同的村庄由于海拔的差异需要修水泵,每个水泵的费用为这两个村庄的海拔差值,且每个水泵为一条河道所用,要求所有的费用/总的河道长度比率最小
分析:r=sigma(h[i][j])/sigma(l[i][j]),设R为最优值,则r>=R;(h[i][j]代表修每条河道的费用,l[i][j]代表每条河道的长度,sigma()为生成树里面的边)
即:sigma(h[i][j])/sigma(l[i][j])>=R,所以:h[r]=sigma(h[i][j])-r*sigma(l[i][j])>=0;
所以对于每一个r对应的h(r)的最小生成树>=0
当h(r)<0的时候减小r的值,否则增大r的值,逐渐二分使h(r)=0即可;
方法一:二分法
#include"stdio.h"
#include"string.h"
#include"math.h"
#define inf 0x3f3f3f3f
#define M 2009
#define eps 1e-7
struct node
{
int x,y,h;
}p[M];
double dist(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
}
double dis[M],G[M][M],L[M][M];
int use[M];
double dij(int n,int s)
{
double sum=0;
memset(use,0,sizeof(use));
for(int i=1;i<=n;i++)
dis[i]=inf;
dis[s]=0;
for(int i=1;i<=n;i++)
{
double mini=inf;
int id=-1;
for(int j=1;j<=n;j++)
{
if(!use[j]&&dis[j]<mini)
{
mini=dis[j];
id=j;
}
}
if(id==-1)break;
sum+=dis[id];
use[id]=1;
for(int j=1;j<=n;j++)
{
if(!use[j]&&dis[j]>G[id][j])
dis[j]=G[id][j];
}
}
return sum;
}
double solve(int n,double r)
{
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
G[i][j]=G[j][i]=fabs(p[i].h*1.0-p[j].h*1.0)-L[i][j]*r+1000000000.0;
}
return dij(n,1)-(n-1)*1000000000.0;
}
int main()
{
int n;
while(scanf("%d",&n),n)
{
double l=0,r=0,mid;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].h);
r+=p[i].h;
}
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
L[i][j]=L[j][i]=dist(p[i],p[j]);
}
}
while(r-l>eps)
{
mid=(l+r)/2;
double msg=solve(n,mid);
if(msg<0)
{
r=mid;
}
else
{
l=mid;
}
}
printf("%.3lf\n",r);
}
return 0;
}
方法二:迭代法
#include"stdio.h"
#include"string.h"
#include"math.h"
#define inf 0x3f3f3f3f
#define M 2009
#define eps 1e-6
struct node
{
int x,y,h;
}p[M];
double dist(node a,node b)
{
return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
}
double dis[M],G[M][M],L[M][M];
int use[M],pre[M];
double dij(int n,int s)
{
double sum=0,cost=0,leng=0;
memset(use,0,sizeof(use));
for(int i=1;i<=n;i++)
{
dis[i]=inf;
pre[i]=-1;
}
dis[s]=0;
for(int i=1;i<=n;i++)
{
double mini=inf;
int id=-1;
for(int j=1;j<=n;j++)
{
if(!use[j]&&dis[j]<mini)
{
mini=dis[j];
id=j;
}
}
if(id==-1)break;
sum+=dis[id];
use[id]=1;
if(pre[id]!=-1)
{
cost+=fabs(p[id].h*1.0-p[pre[id]].h);
leng+=L[id][pre[id]];
}
for(int j=1;j<=n;j++)
{
if(!use[j]&&dis[j]>G[id][j])
{
dis[j]=G[id][j];
pre[j]=id;
}
}
}
return cost/leng;
}
double solve(int n,double r)
{
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
G[i][j]=G[j][i]=fabs(p[i].h*1.0-p[j].h*1.0)-L[i][j]*r+1000000000.0;
}
}
return dij(n,1);
}
int main()
{
int n;
while(scanf("%d",&n),n)
{
for(int i=1;i<=n;i++)
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].h);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
L[i][j]=L[j][i]=dist(p[i],p[j]);
double x0=0,x;
while(1)
{
x=solve(n,x0);
if(fabs(x-x0)<eps)
break;
x0=x;
}
printf("%.3lf\n",x);
}
return 0;
}
01分数规划poj2728(最优比例生成树)的更多相关文章
- POJ 2728 Desert King 01分数规划,最优比率生成树
一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...
- POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题
http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...
- 【转】[Algorithm]01分数规划
因为搜索关于CFRound277.5E题的题解时发现了这篇文章,很多地方都有值得借鉴的东西,因此转了过来 原文:http://www.cnblogs.com/perseawe/archive/2012 ...
- POJ 2976 Dropping tests 01分数规划 模板
Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6373 Accepted: 2198 ...
- 【poj 2976】Dropping tests(算法效率--01分数规划 模版题+二分){附【转】01分数规划问题}
P.S.又是一个抽时间学了2个小时的新东西......讲解在上半部分,题解在下半部分. 先说一下转的原文:http://www.cnblogs.com/perseawe/archive/2012/05 ...
- [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环
01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...
- POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)
[题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...
- POJ2728 最小比率生成树/0-1分数规划/二分/迭代(迭代不会)
用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ 前提是在TLE了好几次下过的 = = 题目意思:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一 ...
- POJ 2728 Desert King(最优比率生成树 01分数规划)
http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...
随机推荐
- Windows与Linux共享文件夹互相访问
[原文] 首先安装并配置软件samba [html] view plain copy sudo yum install samba samba-client vim /etc/samba/smb.c ...
- eclipse Maven -->web project
http://blog.chinaunix.net/uid-26959955-id-3248053.html http://blog.csdn.net/wilsonke/article/details ...
- java JDK8 学习笔记——第16章 整合数据库
第十六章 整合数据库 16.1 JDBC入门 16.1.1 JDBC简介 1.JDBC是java联机数据库的标准规范.它定义了一组标准类与接口,标准API中的接口会有数据库厂商操作,称为JDBC驱动程 ...
- Android高级之第十一讲Hybird开发
本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 随着移动端应用平台的兴起,需求和交互方式的多样化,H5开发逐渐在移动端流行起来:常见的移动产品有We ...
- 【Swing】Swing初步认知
AWT(abstract Window Toolkit) AWT是java发布的第一个图形界面库.AWT通过调用系统本地的库,来创建和显示控件. AWT 的组件都是使用的native code来编写的 ...
- Qt持久性对象进行序列化
Mfc和Java中自定义类的对象都可以对其进行持久性保存,Qt持久性对象进行序列化当然也是必不可少的.不过这个问题还真困扰了我很长时间……Mfc通过重写虚函数Serialize().Java则是所属的 ...
- 通过全局设置过滤器,就能让所有窗口都可移动,而不是都要继承指定QDialog
#include "appinit.h" #include <QMouseEvent> #include <QApplication> #include & ...
- 使用多种客户端消费WCF RestFul服务(二)——.net4.0篇
.net 4.0篇 在.net 4.0下面微软并没有提供类似Net.Http的Rest访问组件,而是在codeplex上面提供的WCF REST Starter Kit Preview 2 里面可以找 ...
- 使用多种客户端消费WCF RestFul服务(一)——服务端
RestFul风格的WCF既然作为跨平台.跨语言.跨技术的一种方式出现,并且在ASP.NET API流行起来之前还是架构的首选技术之一,那么我们就来简要的介绍一下WCF在各个平台客户端的操作. 开发工 ...
- [LeetCode]题解(python):063-Unique path II
题目来源 https://leetcode.com/problems/unique-paths-ii/ Follow up for "Unique Paths": Now cons ...