Java集合之TreeMap
Map的单元是对键值对的处理,之前分析过的两种Map,HashMap和LinkedHashMap都是用哈希值去寻找我们想要的键值对,优点是由O(1)的查找速度。
那如果我们在一个对查找性能要求不那么高,反而对有序性要求比较高的应用场景呢?
这个时候HashMap就不再适用了,我们需要一种新的Map,在JDK中提供了一个接口:SortedMap,我想分析一下具体的实现中的一种:TreeMap.
HahMap是Key无序的,而TreeMap是Key有序的。
1.看一下基本成员:
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{
private final Comparator<? super K> comparator;
private transient Entry<K,V> root = null;
private transient int size = 0;
private transient int modCount = 0;
public TreeMap() {
comparator = null;
}
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
//后面省略
}
TreeMap继承了NavigableMap,而NavigableMap继承自SortedMap,为SortedMap添加了搜索选项,NavigableMap有几种方法,分别是不同的比较要求:floorKey是小于等于,ceilingKey是大于等于,lowerKey是小于,higherKey是大于。
注意初始化的时候,有一个Comparator成员,这是用于维持有序的比较器,当我们想做一个自定义数据结构的TreeMap时,可以重写这个比较器。
2.我们看一下Entry的成员:
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left = null;
Entry<K,V> right = null;
Entry<K,V> parent;
boolean color = BLACK;
//后续省略
}
咦?木有了熟悉了哈希值,多了left,right,parent,这是我们的树结构,最后看到color,明白了:TreeMap是基于红黑树实现的!而且默认的节点颜色是黑色。
至于红黑树,想必多多少少都听过,这是一种平衡的二叉查找树,是2-3树的一种变体,即拥有二叉查找树的高效查找,拥有2-3树的高效平衡插入能力。
红黑树巧妙的增加了颜色这个维度,对2-3树的树本身进行了降维成了二叉树,这样树的调整不会再如2-3树那么繁琐。
有的同学看到这里会质疑我,你这个胡说八道,和算法导论里讲的不一样!
对,CLRS中确实没有这段,这段选自《Algorithms》,我觉得提供了一种有趣的理解思路,所以如果之前只看了CLRS,建议去看一下这本书,互相验证。
不过为了尊重JDK的作者,后面的还是按照CLRS中的讲解来吧,毕竟在JDK源码的注释中写着:From CLR。
我们在红黑树中的一切插入和删除后,为了维护树的有序性的动作看起来繁复,但都是为了维护下面几个红黑树的基本性质:
(1)树的节点只有红与黑两种颜色
(2)根节点为黑色的
(3)叶子节点为黑色的
(4)红色节点的字节点必定是黑色的
(5)从任意一节点出发,到其后继的叶子节点的路径中,黑色节点的数目相同
红黑树的第4条性质保证了这些路径中的任意一条都不存在连续的红节点,而红黑树的第5条性质又保证了所有的这些路径上的黑色节点的数目相同。因而最短路径必定是只包含黑色节点的路径,而最长路径为红黑节点互相交叉的路径,由于所有的路径的起点必须是黑色的,而红色节点又不能连续存在,因而最长路径的长度为全为黑色节点路径长度的二倍。
回到TreeMap本身,看看它的put方法:
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
此处就是二叉树的比较查找到合适的位置,然后插入,需要注意的是
(1)先检测root节点是不是null,如果为null,则新插入的节点为root节点。
(2)最好自定义自己的Comparator,否则将会继承原始的比较方法,可能会出现问题
(3)插入的键值不能为null,否则会抛出空指针的异常。
(4)插入新节点后,调用fixAfterInsertion(e)方法来修复红黑树。
看一下get方法,这里会调用getEntry方法,就是二叉查找树的查找:
final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)
return getEntryUsingComparator(key);
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
Entry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
}
还有一个remove方法,这里最后调用的是deleteEntry()方法,在deleteEntry()方法中最后调用fixAfterDeletion方法来修复树的顺序。
红黑树的删除操作复杂的让人发指,对着CLRS慢慢看吧:
public V remove(Object key) {
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
// If strictly internal, copy successor's element to p and then make p
// point to successor.
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children
// Start fixup at replacement node, if it exists.
Entry<K,V> replacement = (p.left != null ? p.left : p.right);
if (replacement != null) {
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)
root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement;
// Null out links so they are OK to use by fixAfterDeletion.
p.left = p.right = p.parent = null;
// Fix replacement
if (p.color == BLACK)
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p);
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}
上面所做的一切繁琐操作都是为了红黑树的基本性质,而修复顺序的操作中最基本的就是左旋和右旋了,下面是左旋和右选的源码。
/** From CLR */
private void rotateLeft(Entry<K,V> p) {
if (p != null) {
Entry<K,V> r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
}
} /** From CLR */
private void rotateRight(Entry<K,V> p) {
if (p != null) {
Entry<K,V> l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
}
}
其实所有的操作都是关于红黑树的操作,
决定了TreeMap的有序性,对于TreeMap的增删改查的效率都是O(Log(n))的。
到这里,TreeMap其实就差不多了,最关键的还是对红黑树的操作,希望这种数据结构的知识能掌握的比较扎实吧,多看书,多编程,夯实基础,与诸君共勉。
Java集合之TreeMap的更多相关文章
- 【java基础】java集合之TreeMap
转载文章转载请注明出处:http://www.cnblogs.com/skywang12345/admin/EditPosts.aspx?postid=3310928 第1部分 TreeMap介绍 T ...
- Java集合:TreeMap源码剖析
一.概念 TreeMap是基于红黑树结构实现的一种Map,要分析TreeMap的实现首先就要对红黑树有所了解. 要了解什么是红黑树,就要了解它的存在主要是为了解决什么问题,对比其他数据结构比如数组,链 ...
- 死磕 java集合之TreeMap源码分析(一)- 内含红黑树分析全过程
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 简介 TreeMap使用红黑树存储元素,可以保证元素按key值的大小进行遍历. 继承体系 Tr ...
- Java集合之TreeMap源码分析
一.概述 TreeMap是基于红黑树实现的.由于TreeMap实现了java.util.sortMap接口,集合中的映射关系是具有一定顺序的,该映射根据其键的自然顺序进行排序或者根据创建映射时提供的C ...
- 死磕 java集合之TreeMap源码分析(四)-内含彩蛋
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 二叉树的遍历 我们知道二叉查找树的遍历有前序遍历.中序遍历.后序遍历. (1)前序遍历,先遍历 ...
- 死磕 java集合之TreeMap源码分析(三)- 内含红黑树分析全过程
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 删除元素 删除元素本身比较简单,就是采用二叉树的删除规则. (1)如果删除的位置有两个叶子节点 ...
- 死磕 java集合之TreeMap源码分析(二)- 内含红黑树分析全过程
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 插入元素 插入元素,如果元素在树中存在,则替换value:如果元素不存在,则插入到对应的位置, ...
- 给jdk写注释系列之jdk1.6容器(13)-总结篇之Java集合与数据结构
是的,这篇blogs是一个总结篇,最开始的时候我提到过,对于java容器或集合的学习也可以看做是对数据结构的学习与应用.在前面我们分析了很多的java容器,也接触了好多种常用的数据结构,今天 ...
- 死磕 java集合之终结篇
概览 我们先来看一看java中所有集合的类关系图. 这里面的类太多了,请放大看,如果放大还看不清,请再放大看,如果还是看不清,请放弃. 我们下面主要分成五个部分来逐个击破. List List中的元素 ...
随机推荐
- JSP页面的隐含对象和Servlet程序里的对象之间的关联和区别
首先,有两个概念: 1.JSP页面的域对象:pageContext,request,session,application对象(四个) void setAttribute(String name,Ob ...
- 报错:HTTP Status 404 - There is no Action mapped for namespace [/] and action name [product-save] associated with context path [/20161101-struts2-2].
运行:index.jsp---->input.jsp----->details.jsp,但是在input.jsp到details.jsp的时候报错误. 异常如下: 严重: Could no ...
- Provisional, Temporary 和Interim 的区别
1 Provisional adj. 临时的.暂时的.暂定的:n. 临时邮票 强调在一定时期内暂时的.双方同意的但还不是最终确定的决定或者条约等. Such as例如: Provisional go ...
- 【AT91SAM3S】英蓓特EM-SAM3S开发板例子工程中的启动文件分析
手上一块英倍特的EM-SAM3S开发板,拿到已经有一个月了.本来是做uLoong活动使用的板子,可当初由于不熟悉这个芯片,使用了STM32F4当作了替代.最近准备抽点时间折腾下这个板子. 这个板子的资 ...
- WS-Security
ylbtech-Miscellaneos: WS-Security A,返回顶部 1, WS-Security (Web服务安全) 是一种提供在Web服务上应用安全的方法的网络传输协议. 2004年4 ...
- Python-Tkinter几何布局管理(转)
所有的Tkinter组件都包含专用的几何管理方法,这些方法是用来组织和管理整个父配件区中子配件的布局的.Tkinter提供了截然不同的三种几何管理类:pack.grid和place. pack() p ...
- csv文件批量导入数据到sqlite。
csv文件批量导入数据到sqlite. 代码: f = web.input(bs_switch = {}) # bs_switch 为from表单file字段的namedata =[i.split( ...
- [ActionScript 3.0] AS3.0 下雨及涟漪效果
帧代码: stage.frameRate = 80; function init(x1:Number,y1:Number) { var mc:MovieClip=new MovieClip(); ad ...
- 2. xargs 命令
1.简介 xargs是给命令传递参数的一个过滤器,也是组合多个命令的一个工具.它把一个数据流分割为一些足够小的块,以方便过滤器和命令进行处理.通常情况下,xargs从管道或者stdin中读取数据,但是 ...
- 异常Throwable类
所有异常类型都是Throwable类的子类,它派生出两个子类 Error和Exception Error类:表示紧靠程序本身无法恢复的严重错误,如内存溢出,动态链接失败,虚拟机错误 ...