BZOJ 1072: [SCOI2007]排列perm 状态压缩DP
1072: [SCOI2007]排列perm
Description
给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)。例如123434有90种排列能
被2整除,其中末位为2的有30种,末位为4的有60种。
Input
输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间用空格隔开。s保证只包含数字0, 1
, 2, 3, 4, 5, 6, 7, 8, 9.
Output
每个数据仅一行,表示能被d整除的排列的个数。
Sample Input
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29
Sample Output
3
3628800
90
3
6
1398
HINT
在前三个例子中,排列分别有1, 3, 3628800种,它们都是1的倍数。
【限制】
100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15
题解:
设定dp[i][k] 选取的书状态为i下mod d等于j的方案数
显然有转移方程 dp[i|(1<<j)][(k*10+a[j]-'0')%d] += dp[i][k];这样时间跑三维 10*(1<<n)*d,空间(1<<n)*d
最后记得去重
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 1e6+, M = 1e3+, inf = 2e9, mod = 1e9+;
int dp[<<][M],d,T,p[N],c[N];
char a[N];
int main()
{
c[]=;for(int i=;i<=;i++) c[i]=c[i-]*i;
scanf("%d",&T);
while(T--)
{
scanf("%s%d",a,&d);
int n = strlen(a);
memset(p,,sizeof(p));
for(int i=;i<n;i++) p[a[i]-'']++;
memset(dp,,sizeof(dp));
int U = (<<n)-;dp[][]=;
for(int i=;i<=U;i++)
{
for(int j=;j<n;j++)
{
if(!(i&(<<j)))
{
for(int k=;k<d;k++)
dp[i|(<<j)][(k*+(a[j]-''))%d] += dp[i][k];
}
}
}
int ans = dp[U][];
for(int i=;i<;i++) ans/=c[p[i]];
printf("%d\n",ans);
}
return ;
}
BZOJ 1072: [SCOI2007]排列perm 状态压缩DP的更多相关文章
- BZOJ 1072 [SCOI2007]排列perm ——状压DP
[题目分析] 没什么好说的,水题. 代码比较丑,结果需要开long long 时间爆炸 [代码] #include <cstdio> #include <cstring> #i ...
- bzoj 1072: [SCOI2007]排列perm 状压dp
code: #include <bits/stdc++.h> #define N 1005 using namespace std; void setIO(string s) { stri ...
- BZOJ 1072 [SCOI2007]排列perm
1072: [SCOI2007]排列perm Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1268 Solved: 782[Submit][Sta ...
- [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】
题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...
- [bzoj1072][SCOI2007][排列perm] (状态压缩+数位dp+排列去重)
Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input ...
- BZOJ 1072: [SCOI2007]排列perm [DP 状压 排列组合]
题意:给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0) 100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15 看到整 ...
- bzoj 1072: [SCOI2007]排列perm【状压dp】
先写了个next_permutation结果T了,于是开始写状压 设f[s][i]为选取状态为s,选的数模d为i的方案数,去重的话直接除以每个数字的出现次数的阶乘即可 #include<iost ...
- BZOJ 1072 [SCOI2007]安排perm 如压力DP
意甲冠军:联系 方法:状压DP? 题解:这题事实上没啥好写的.不算非常难,推一推就能搞出来. 首先看到这个问题,对于被d整除这个条件,非常easy就想到是取余数为0,所以想到可能状态中刚開始含有取余数 ...
- 【以前的空间】bzoj 1072 [SCOI2007]排列perm
又颓废了一个下午,最近撸mc撸到丧失意识了,玩的有点恶心,于是找水题做,瞧不起颓废的自己啊. another水题. 这题题意很明显啦,就是找数字排列后组成的数去mod d=0后有多少种. 普通的搜索的 ...
随机推荐
- whereis命令
whereis命令只能用于程序名的搜索,而且只搜索二进制文件(参数-b).man说明文件(参数-m)和源代码文件(参数-s).如果省略参数,则返回所有信息. 和find相比,whereis查找的速度非 ...
- poj1142.Smith Number(数学推导)
Smith Number Time Limit: 1 Sec Memory Limit: 64 MB Submit: 825 Solved: 366 Description While skimm ...
- [Effective JavaScript 笔记]第21条:使用apply方法通过不同数量的参数调用函数
apply()方法定义 函数的apply()方法和call方法作用相同,区别在于接收的参数的方式不同.apply()方法接收两个参数,一个是对象,一个是参数数组. apply()作用 1.用于延长函数 ...
- 练习英语ing——[POJ1004]Financial Management
[POJ1004]Financial Management 试题描述 Larry graduated this year and finally has a job. He's making a lo ...
- Firefox渗透测试黑客插件集
前天看S哥用Firefox的hackbar进行手动注入进行渗透,觉得直接运用浏览器的插件进行渗透测试有很多优点,既可以直接在前端进行注入等操作,也可以省却了寻找各种工具的麻烦.前端还是最直接的!于是这 ...
- MongoDB概述&语法
Nosql DB 这是一个非关系型数据库. 通常我们的数据库有三类: 关系型数据库(RDBMS),联机分析处理数据库(OLAP),和菲关系型数据库(NoSql). MongoDB属于第三种,而且是一 ...
- 【Django】Django 如何支持 分组查询、统计?
代码: from django.db.models import Sum alarm_sum_group_items = models.FILE_PROTECT_ALARM.objects.filte ...
- Linux运维
概要:http://os.51cto.com/art/201312/423616.htm 论坛: http://www.linux360.cn/ https://www.centos.bz/ http ...
- webdriver+python 对三大浏览器的支持
1.在IE浏览器上运行测试脚本,首先需要下载IEDriverServer.exe(http://code.google.com/p/selenium/downloads/list,根据浏览器的版本下载 ...
- mybatis的jdbcType类型
在用mybatis的时候,如果传过来的参数有可能为空,那么就要指定jdbcType是什么了,否则会有异常,jdbcType有以下几种: BIT FLOAT CHAR ...