Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18765    Accepted Submission(s): 7946

Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
 
Sample Input
abcfbc abfcab
programming contest
abcd mnp
 
Sample Output
4
2
0
 
Source
 
Recommend
Ignatius   |   We have carefully selected several similar problems for you:  1087 1176 1058 1069 1421

 
之前做过好多次,一直不解其意,最近重温一遍。现在写下解题心得。
这道题的目的是求出a字符串和b字符串的最长公共子序列,用到动态规划。
动态规划的解法:
  先定义两个字符数组存储两个字符串
—— char a[1000]、b[1000];
  然后再定义一个二维数组,存储求解最终问题过程中产生的所有子问题的解
—— int dp[1001][1001];
最长公共子序列的状态转移方程为:
if(a[i]==b[j])  
    dp[i][j]=dp[i-1][j-1]+1;
else 
    dp[i][j]=dp[i-1][j]>dp[i][j-1]?dp[i-1][j]:dp[i][j-1];
根据以上写出程序即可。
另外摘取别人的一段对动态规划的解释:
【动态规划法】
  经常会遇到复杂的问题不能简单的分解成几个子问题,而会分解出一系列的子问题。简单的采用把大问题分解成子问题,并综合所有子问题的解求出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。
  为了节约重复求相同子问题的时间,引入一个数组,不管他们是否对最终解有用,把所有子问题的解存于数组中,这就是动态规划法所采用的基本做法。
 
网易公开课的《算法导论》也有详细的讲解:
 
下面给出代码:
【C++】
 #include <iostream>

 using namespace std;
int dp[][];
int main()
{
//dp[i][j]代表着a取前i个字符和b取前j个字符时的最长公共子序列的大小
char a[],b[];
while(cin>>a>>b){
int i,j;
int al,bl;
for(i=;a[i]!='\0';i++); //计算a、b字符串长度
for(j=;b[j]!='\0';j++);
al=i;bl=j; for(i=;i<=al;i++) //dp[][]初始化
dp[i][]=;
for(i=;i<=bl;i++)
dp[][i]=; for(i=;i<=al;i++) //计算dp[][]
for(j=;j<=bl;j++){
if(a[i-]==b[j-])
dp[i][j]=dp[i-][j-]+;
else
dp[i][j] = dp[i-][j] > dp[i][j-] ? dp[i-][j] : dp[i][j-];
} cout<<dp[al][bl]<<endl;
}
return ;
}
【C】
 #include <stdio.h>
#include <stdlib.h>
int dp[][];
int main()
{
char a[],b[];
while(scanf("%s%s",a,b)!=EOF){
int i,j;
int al,bl;
for(i=;a[i]!='\0';i++);
for(j=;b[j]!='\0';j++);
al=i;bl=j;
for(i=;i<=al;i++)
dp[i][]=;
for(j=;j<=bl;j++)
dp[][j]=;
for(i=;i<=al;i++)
for(j=;j<=bl;j++){
if(a[i-]==b[j-])
dp[i][j] = dp[i-][j-]+;
else
dp[i][j] = dp[i-][j] > dp[i][j-] ? dp[i-][j] : dp[i][j-];
}
printf("%d\n",dp[al][bl]);
}
return ;
}

Freecode : www.cnblogs.com/yym2013

hdu 1159:Common Subsequence(动态规划)的更多相关文章

  1. HDU 1159 Common Subsequence 动态规划

    2017-08-06 15:41:04 writer:pprp 刚开始学dp,集训的讲的很难,但是还是得自己看,从简单到难,慢慢来(如果哪里有错误欢迎各位大佬指正) 题意如下: 给两个字符串,找到其中 ...

  2. HDU 1159 Common Subsequence 最长公共子序列

    HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...

  3. HDU 1159 Common Subsequence

    HDU 1159 题目大意:给定两个字符串,求他们的最长公共子序列的长度 解题思路:设字符串 a = "a0,a1,a2,a3...am-1"(长度为m), b = "b ...

  4. HDU 1159 Common Subsequence 公共子序列 DP 水题重温

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  5. hdu 1159 Common Subsequence(最长公共子序列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  6. hdu 1159 Common Subsequence(最长公共子序列 DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  7. HDU 1159 Common Subsequence(裸LCS)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  8. HDU 1159 Common Subsequence (动态规划、最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. HDU 1159.Common Subsequence【动态规划DP】

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

随机推荐

  1. 设置button不同状态下的背景色,即把这个颜色变成图片设置成,背景图片

    - (void)setBackgroundColor:(UIColor *)backgroundColor forState:(UIControlState)state { [self setBack ...

  2. jquery源码分析-工具函数

    jQuery的版本一路狂飙啊,现在都到了2.0.X版本了.有空的时候,看看jquery的源码,学习一下别人的编程思路还是不错的. 下面这里是一些jquery的工具函数代码,大家可以看看,实现思路还是很 ...

  3. JS的运行机制

    代码块: JS中的代码块是指由<script>标签分割的代码段.JS是按照代码块来进行编译和执行的,代码块间相互独立(即就算代码块1出错,但不影响代码块2的加载和执行),但变量和方法共享. ...

  4. XSS 探索

    1. 什么是XSS攻击? 正常的页面被渗出了攻击者的js脚本,这些脚本可以非法地获取用户信息,然后将信息发送到attacked的服务端. XSS是需要充分利用输出环境来构造攻击脚本的 2. 危害 非法 ...

  5. 删除/var/lib/docker

    FATA[0000] Get http:///var/run/docker.sock/v1.18/containers/json?all=1: dial unix /var/run/docker.so ...

  6. [Effective JavaScript 笔记] 第5条:避免对混合类型使用==运算符

    “1.0e0”=={valueOf:function(){return true;}} 是值是多少? 这两个完全不同的值使用==运算符是相等的.为什么呢?请看<[Effective JavaSc ...

  7. [POJ1003]Hangover

    [POJ1003]Hangover 试题描述 How far can you make a stack of cards overhang a table? If you have one card, ...

  8. svn报错 400 Bad Request

    MyEclipse中的svn,commit经常报错 Error: Commit failed (details follow):  Error: At least one property chang ...

  9. tomcat配置文件之Server.xml

    Server.xml包含的元素有<Server>.<Service>.<Connector>.<Engine>.<Host>.<Con ...

  10. qcow2文件压缩

    qemu-img convert -O qcow2 /path/old.img.qcow2 /path/new.img.qcow2 转自:https://havee.me/linux/2011-09/ ...