http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35913

Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
several thrilling events we find her in the first station of Algorithms City Metro, examining the time
table. The Algorithms City Metro consists of a single line with trains running both ways, so its time
table is not complicated.
Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
knows that a powerful organization is after her. She also knows that while waiting at a station, she is
at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running
trains as much as possible, even if this means traveling backward and forward. Maria needs to know
a schedule with minimal waiting time at the stations that gets her to the last station in time for her
appointment. You must write a program that finds the total waiting time in a best schedule for Maria.
The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains
move in both directions: from the first station to the last station and from the last station back to the
first station. The time required for a train to travel between two consecutive stations is fixed since all
trains move at the same speed. Trains make a very short stop at each station, which you can ignore
for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the
trains involved stop in that station at the same time.
Input
The input file contains several test cases. Each test case consists of seven lines with information as
follows.
Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.
Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.
Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
between two consecutive stations: t1 represents the travel time between the first two stations, t2
the time between the second and the third station, and so on.
Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first
station.
Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which
trains depart from the first station.
Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th
station.
Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
trains depart from the N-th station.
The last case is followed by a line containing a single zero.
Output
For each test case, print a line containing the case number (starting with 1) and an integer representing
the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is
unable to make the appointment. Use the format of the sample output.
Sample Input
4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0
Sample Output
Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible

题意:紫书268页,

看着题解搞了一道wf题,爽!

dp[i][j]表示时刻i,在车站j,等待的最少时间
有3种方案:
等一分钟
往左搭车
往右搭车

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = ;
int t[MAX],n,T,M1,M2,d1[MAX],d2[MAX];
int has_train[MAX][MAX][],dp[MAX][MAX];
//has_train[i][j][0]表示i时刻在j车站往右走的车,has_train[i][j][1]表示往左行的车
int main()
{
int Case = ;
while(scanf("%d", &n) != EOF && n)
{
scanf("%d", &T);
for(int i = ; i < n; i++)
scanf("%d", &t[i]);
scanf("%d", &M1);
for(int i = ; i <= M1; i++)
scanf("%d", &d1[i]);
scanf("%d", &M2);
for(int j = ; j <= M2; j++)
scanf("%d", &d2[j]);
memset(has_train, , sizeof(has_train));
int sum = ;
//对has_train进行预处理
for(int i = ; i <= M1; i++)
{
sum = d1[i];
has_train[ d1[i] ][][] = ;
for(int j = ; j < n; j++)
{
sum += t[j];
has_train[ sum ][j + ][] = ;
}
}
for(int i = ; i <= M2; i++)
{
sum = d2[i];
has_train[ d2[i] ][n][] = ;
for(int j = n - ; j >= ; j--)
{
sum += t[j];
has_train[sum][j][] = ;
}
}
for(int i = ; i <= n-; i++)
dp[T][i] = INF;
dp[T][n] = ;
//这个第一层循环一定是从大往小循环,假设求i时刻j车站最少时间,在这点有三种情况,考虑往左走的车,那么选了往左走的车之后这一点的时间,前提是选了往左走的车辆,时间肯定是在i之后,由选了往左走的车后推出i,j;所以为什么要递减循环
for(int i = T - ; i >= ; i--)
{
for(int j = ; j <= n; j++)
{
dp[i][j] = dp[i + ][j] + ; //等待一分钟
if(j < n && has_train[i][j][] && i + t[j] <= T) //往右走,j必然要小于n,才能走,i+t[j]表示这一点的时间加上到下一点的时间要小于等于T,如果大于T没意义了,因为是T
{ dp[i][j] = min(dp[i][j], dp[ i + t[j] ][ j + ] );
}
if(j > && has_train[i][j][] && i + t[j - ] <= T)
{
dp[i][j] = min(dp[i][j], dp[ i + t[j - ] ][ j - ] );
}
}
}
printf("Case Number %d: ", ++Case);
if(dp[][] >= INF)
printf("impossible\n");
else
printf("%d\n",dp[][]);
} return ;
}

UVA1025---A Spy in the Metro(DP)的更多相关文章

  1. UVa 1025 A Spy in the Metro (DP动态规划)

    题意:一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, 也就是尽量多坐车,最后输出最少等待时间. 析:这个挺复杂,首先时间是 ...

  2. uva A Spy in the Metro(洛谷 P2583 地铁间谍)

    A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especially dangero ...

  3. UVA1025 A Spy in the Metro —— DP

    题目链接: https://vjudge.net/problem/UVA-1025 题解: 详情请看紫书P267. 与其说是DP题,我觉得更像是模拟题,特别是用记忆化搜索写. 递推: #include ...

  4. UVa 1025 A Spy in the Metro(动态规划)

    传送门 Description Secret agent Maria was sent to Algorithms City to carry out an especially dangerous ...

  5. UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)

    传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...

  6. World Finals 2003 UVA - 1025 A Spy in the Metro(动态规划)

    分析:时间是一个天然的序,这个题目中应该决策的只有时间和车站,使用dp[i][j]表示到达i时间,j车站在地上已经等待的最小时间,决策方式有三种,第一种:等待一秒钟转移到dp[i+1][j]的状态,代 ...

  7. 【动态规划】[UVA1025]A Spy in the Metro 城市里的间谍

    参考:https://blog.csdn.net/NOIAu/article/details/71517440 https://blog.csdn.net/c20180630/article/deta ...

  8. Uva1025 A Spy in the Metro

    #include <iostream> #include <cstring> #include <cstdio> using namespace std; ]; ] ...

  9. 题解:UVa1025 A Spy in the Metro

    原题链接 pdf 题目大意 给出一张无向图图,求该图的最小瓶颈生成树. 无向图的瓶颈生成树:无向图\(G\)的一颗瓶颈生成树是这样的一颗生成树:它最大的边权值在\(G\)的所有生成树中是最小的.瓶颈生 ...

随机推荐

  1. 在文本中匹配链接并添加A标签

    (?<!href="|">)(https?:\/\/[\w\-\.!~?&=+\*\'(),\/]+)((?!\<\/\a\>).)* 这个正则可以 ...

  2. python 反模式

    不使用 pythonic 的循环: l = [1,2,3] #Bad for i in range(0,len(list)): le = l[i] print(i,le) #Good for i,le ...

  3. survival analysis 生存分析与R 语言示例 入门篇

    原创博客,未经允许,不得转载. 生存分析,survival analysis,顾名思义是用来研究个体的存活概率与时间的关系.例如研究病人感染了病毒后,多长时间会死亡:工作的机器多长时间会发生崩溃等. ...

  4. 不得不说的JavaScript异步加载

    同步加载的问题 默认的js是同步加载的,这里的“加载”可以理解成是解析.执行,而不是“下载”,在最新版本的浏览器中,浏览器对于代码请求的资源都是瀑布式的加载,而不是阻塞式的,但是js的执行总是阻塞的. ...

  5. .NET中常用的几种解析JSON方法

    一.基本概念 json是什么? JSON:JavaScript 对象表示法(JavaScript Object Notation). JSON 是一种轻量级的数据交换格式,是存储和交换文本信息的语法. ...

  6. SEO入门教程

    什么是SEO? SEO的中文名叫做搜索引擎优化,主要的作用是将网站的关键词优化到搜索引擎靠前的位置 其中关键词可以划分成以下这几类: 主关键词,长尾关键词,相关关键词 例如:主关键词:网页 长尾关键词 ...

  7. mysql基础 事务的认识和使用

    事务(Transaction)是访问并可能更新数据库中各种数据项的一个程序执行单元(unit).事务是恢复和并发控制的基本单位. 在关系数据库中,一个事务可以是一条SQL语句,一组SQL语句或整个程序 ...

  8. Git.Framework 框架随手记-- 分享一个"比较垃圾"的项目

    本文主要分享一个Git.Framework 开发的一个项目的部分源码,此项目代码"比较垃圾",所以请各位码农,码畜,码神,码圣勿喷!发此文只为记录工作问题以及分享问题! 一. 项目 ...

  9. css写一个梯形

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>D ...

  10. margin的理解

    1.盒子模型 在进行网页设计的时候,我们使用的是盒子模型,其内容如下: 整个网页就是大盒子套小盒子,小盒子又套更小的盒子来实现的.但是在做网页设计时总是搞不清margin和padding的使用方式,在 ...