http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35913

Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
several thrilling events we find her in the first station of Algorithms City Metro, examining the time
table. The Algorithms City Metro consists of a single line with trains running both ways, so its time
table is not complicated.
Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
knows that a powerful organization is after her. She also knows that while waiting at a station, she is
at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running
trains as much as possible, even if this means traveling backward and forward. Maria needs to know
a schedule with minimal waiting time at the stations that gets her to the last station in time for her
appointment. You must write a program that finds the total waiting time in a best schedule for Maria.
The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains
move in both directions: from the first station to the last station and from the last station back to the
first station. The time required for a train to travel between two consecutive stations is fixed since all
trains move at the same speed. Trains make a very short stop at each station, which you can ignore
for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the
trains involved stop in that station at the same time.
Input
The input file contains several test cases. Each test case consists of seven lines with information as
follows.
Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.
Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.
Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
between two consecutive stations: t1 represents the travel time between the first two stations, t2
the time between the second and the third station, and so on.
Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first
station.
Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which
trains depart from the first station.
Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th
station.
Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
trains depart from the N-th station.
The last case is followed by a line containing a single zero.
Output
For each test case, print a line containing the case number (starting with 1) and an integer representing
the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is
unable to make the appointment. Use the format of the sample output.
Sample Input
4
55
5 10 15
4
0 5 10 20
4
0 5 10 15
4
18
1 2 3
5
0 3 6 10 12
6
0 3 5 7 12 15
2
30
20
1
20
7
1 3 5 7 11 13 17
0
Sample Output
Case Number 1: 5
Case Number 2: 0
Case Number 3: impossible

题意:紫书268页,

看着题解搞了一道wf题,爽!

dp[i][j]表示时刻i,在车站j,等待的最少时间
有3种方案:
等一分钟
往左搭车
往右搭车

 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAX = ;
int t[MAX],n,T,M1,M2,d1[MAX],d2[MAX];
int has_train[MAX][MAX][],dp[MAX][MAX];
//has_train[i][j][0]表示i时刻在j车站往右走的车,has_train[i][j][1]表示往左行的车
int main()
{
int Case = ;
while(scanf("%d", &n) != EOF && n)
{
scanf("%d", &T);
for(int i = ; i < n; i++)
scanf("%d", &t[i]);
scanf("%d", &M1);
for(int i = ; i <= M1; i++)
scanf("%d", &d1[i]);
scanf("%d", &M2);
for(int j = ; j <= M2; j++)
scanf("%d", &d2[j]);
memset(has_train, , sizeof(has_train));
int sum = ;
//对has_train进行预处理
for(int i = ; i <= M1; i++)
{
sum = d1[i];
has_train[ d1[i] ][][] = ;
for(int j = ; j < n; j++)
{
sum += t[j];
has_train[ sum ][j + ][] = ;
}
}
for(int i = ; i <= M2; i++)
{
sum = d2[i];
has_train[ d2[i] ][n][] = ;
for(int j = n - ; j >= ; j--)
{
sum += t[j];
has_train[sum][j][] = ;
}
}
for(int i = ; i <= n-; i++)
dp[T][i] = INF;
dp[T][n] = ;
//这个第一层循环一定是从大往小循环,假设求i时刻j车站最少时间,在这点有三种情况,考虑往左走的车,那么选了往左走的车之后这一点的时间,前提是选了往左走的车辆,时间肯定是在i之后,由选了往左走的车后推出i,j;所以为什么要递减循环
for(int i = T - ; i >= ; i--)
{
for(int j = ; j <= n; j++)
{
dp[i][j] = dp[i + ][j] + ; //等待一分钟
if(j < n && has_train[i][j][] && i + t[j] <= T) //往右走,j必然要小于n,才能走,i+t[j]表示这一点的时间加上到下一点的时间要小于等于T,如果大于T没意义了,因为是T
{ dp[i][j] = min(dp[i][j], dp[ i + t[j] ][ j + ] );
}
if(j > && has_train[i][j][] && i + t[j - ] <= T)
{
dp[i][j] = min(dp[i][j], dp[ i + t[j - ] ][ j - ] );
}
}
}
printf("Case Number %d: ", ++Case);
if(dp[][] >= INF)
printf("impossible\n");
else
printf("%d\n",dp[][]);
} return ;
}

UVA1025---A Spy in the Metro(DP)的更多相关文章

  1. UVa 1025 A Spy in the Metro (DP动态规划)

    题意:一个间谍要从第一个车站到第n个车站去会见另一个,在是期间有n个车站,有来回的车站,让你在时间T内时到达n,并且等车时间最短, 也就是尽量多坐车,最后输出最少等待时间. 析:这个挺复杂,首先时间是 ...

  2. uva A Spy in the Metro(洛谷 P2583 地铁间谍)

    A Spy in the Metro Secret agent Maria was sent to Algorithms City to carry out an especially dangero ...

  3. UVA1025 A Spy in the Metro —— DP

    题目链接: https://vjudge.net/problem/UVA-1025 题解: 详情请看紫书P267. 与其说是DP题,我觉得更像是模拟题,特别是用记忆化搜索写. 递推: #include ...

  4. UVa 1025 A Spy in the Metro(动态规划)

    传送门 Description Secret agent Maria was sent to Algorithms City to carry out an especially dangerous ...

  5. UVA 1025 "A Spy in the Metro " (DAG上的动态规划?? or 背包问题??)

    传送门 参考资料: [1]:算法竞赛入门经典:第九章 DAG上的动态规划 题意: Algorithm城市的地铁有 n 个站台,编号为 1~n,共有 M1+M2 辆列车驶过: 其中 M1 辆列车从 1 ...

  6. World Finals 2003 UVA - 1025 A Spy in the Metro(动态规划)

    分析:时间是一个天然的序,这个题目中应该决策的只有时间和车站,使用dp[i][j]表示到达i时间,j车站在地上已经等待的最小时间,决策方式有三种,第一种:等待一秒钟转移到dp[i+1][j]的状态,代 ...

  7. 【动态规划】[UVA1025]A Spy in the Metro 城市里的间谍

    参考:https://blog.csdn.net/NOIAu/article/details/71517440 https://blog.csdn.net/c20180630/article/deta ...

  8. Uva1025 A Spy in the Metro

    #include <iostream> #include <cstring> #include <cstdio> using namespace std; ]; ] ...

  9. 题解:UVa1025 A Spy in the Metro

    原题链接 pdf 题目大意 给出一张无向图图,求该图的最小瓶颈生成树. 无向图的瓶颈生成树:无向图\(G\)的一颗瓶颈生成树是这样的一颗生成树:它最大的边权值在\(G\)的所有生成树中是最小的.瓶颈生 ...

随机推荐

  1. 动态调用webservice,不需要添加Web References

    using System; using System.Collections.Generic; using System.Web; using System.Net; using System.IO; ...

  2. VC/Wince 实现仿Win8 Metro风格界面3——按钮移动交换、删除、添加快捷方式(附效果图)

    上一篇文章写了如何进行页面滑动切换,今天我讲一下如何实现两个按钮拖动交换位置,包括同一个页面按钮交换或者两个页面之间的按钮交换.另外就是如何拖动删除界面上的快捷方式.按钮交换和拖动删除,这两个功能基本 ...

  3. [转]服务器自动化操作 RunDeck

    From : http://www.oschina.net/p/rundeck/similar_projects?sort=view&lang=25 RunDeck 是用 Java/Grail ...

  4. C语言 文件操作5--文件的常用函数

    #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib.h> //stdin:标准输入文件指针,系统 ...

  5. SQL Server 维护计划实现数据库备份(Step by Step)

    转自:http://www.cnblogs.com/gaizai/archive/2011/11/18/2254445.html 一.前言 SQL Server 备份和还原全攻略,里面包括了通过SSM ...

  6. Java系列:JVM指令详解(上)(zz)

    一.未归类系列A 此系列暂未归类. 指令码    助记符                            说明    59:iastore    60:lload 6       //因为str ...

  7. Expression 表达式树学习整理

    整理了一下表达式树的一些东西,入门足够了 先从ConstantExpression 开始一步一步的来吧  它表示具有常量值的表达式 我们选建一个控制台应用程序 ConstantExpression _ ...

  8. 支持Ajax跨域访问ASP.NET Web Api 2(Cors)的简单示例教程演示

    随着深入使用ASP.NET Web Api,我们可能会在项目中考虑将前端的业务分得更细.比如前端项目使用Angularjs的框架来做UI,而数据则由另一个Web Api 的网站项目来支撑.注意,这里是 ...

  9. 教你写一个Android可快速复用的小键盘输入控件

    引子 在Android项目开发中特别是一些稍大型的项目,面对需求文档的时候你经常会发现很多地方用到了同样的组件,但是又略有不同.比如这个: 右边是一个小键盘输入板,左边当焦点不同的时候分别用右边的小键 ...

  10. Orchard基本概念

    本文链接:http://www.cnblogs.com/souther/p/4531273.html Orchard是个CMS(这不是废话么),它的首要目标是帮助你从现有的碎片建设网站.这些碎片大小不 ...