import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob;
import org.apache.hadoop.mapreduce.lib.jobcontrol.JobControl;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class JobCtrlTest { // 第一个Job的map函数
public static class Map_First extends
Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} // 第一个Job的reduce函数
public static class Reduce_First extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
result.set(sum); context.write(key, result);
}
} // 第二个job的map函数
public static class Map_Second extends
Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} // 第二个Job的reduce函数
public static class Reduce_Second extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
result.set(sum);
context.write(key, result);
}
} // 启动函数
public static void main(String[] args) throws IOException { JobConf conf = new JobConf(JobCtrlTest.class); // 第一个job的配置
Job job1 = Job.getInstance(conf, "join1");
job1.setJarByClass(JobCtrlTest.class); job1.setMapperClass(Map_First.class);
job1.setReducerClass(Reduce_First.class); job1.setMapOutputKeyClass(Text.class);// map阶段的输出的key
job1.setMapOutputValueClass(IntWritable.class);// map阶段的输出的value job1.setOutputKeyClass(Text.class);// reduce阶段的输出的key
job1.setOutputValueClass(IntWritable.class);// reduce阶段的输出的value // 加入控制容器
ControlledJob ctrljob1 = new ControlledJob(conf);
ctrljob1.setJob(job1);
// job1的输入输出文件路径
FileInputFormat.addInputPath(job1, new Path(args[0]));
FileOutputFormat.setOutputPath(job1, new Path(args[1])); // 第二个作业的配置
Job job2 = Job.getInstance(conf, "Join2");
job2.setJarByClass(JobCtrlTest.class); job2.setMapperClass(Map_Second.class);
job2.setReducerClass(Reduce_Second.class); job2.setMapOutputKeyClass(Text.class);// map阶段的输出的key
job2.setMapOutputValueClass(IntWritable.class);// map阶段的输出的value job2.setOutputKeyClass(Text.class);// reduce阶段的输出的key
job2.setOutputValueClass(IntWritable.class);// reduce阶段的输出的value // 作业2加入控制容器
ControlledJob ctrljob2 = new ControlledJob(conf);
ctrljob2.setJob(job2); // 设置多个作业直接的依赖关系
// 如下所写:
// 意思为job2的启动,依赖于job1作业的完成 ctrljob2.addDependingJob(ctrljob1); // 输入路径是上一个作业的输出路径,因此这里填args[1],要和上面对应好
FileInputFormat.addInputPath(job2, new Path(args[1])); // 输出路径从新传入一个参数,这里需要注意,因为我们最后的输出文件一定要是没有出现过得
// 因此我们在这里new Path(args[2])因为args[2]在上面没有用过,只要和上面不同就可以了
FileOutputFormat.setOutputPath(job2, new Path(args[2])); // 主的控制容器,控制上面的总的两个子作业
JobControl jobCtrl = new JobControl("myctrl"); // 添加到总的JobControl里,进行控制
jobCtrl.addJob(ctrljob1);
jobCtrl.addJob(ctrljob2); // 在线程启动,记住一定要有这个
Thread t = new Thread(jobCtrl);
t.start(); while (true) { if (jobCtrl.allFinished()) {// 如果作业成功完成,就打印成功作业的信息
System.out.println(jobCtrl.getSuccessfulJobList());
jobCtrl.stop();
break;
}
}
}
}

MapReduce使用JobControl管理实例的更多相关文章

  1. 6.7 Mapreduce作业流JobControl和Oozie

    1.1  Mapreduce作业流JobControl和Oozie 更复杂的任务,需要多个mapreduce作业,形成作业流,而不是增加map和reduce的复杂度.复杂问题,可以用高级语言pig.h ...

  2. JobControl管理多job依赖完整示例

    处理 复杂的要求的时候,有时一个mapreduce程序是完成不了的,往往需要多个mapreduce程序,这个时候就要牵扯到各个任务之间的依赖关系,所谓 依赖就是一个MR Job 的处理结果是另外的MR ...

  3. MapReduce多种join实现实例分析(二)

    上一篇<MapReduce多种join实现实例分析(一)>,大家可以点击回顾该篇文章.本文是MapReduce系列第二篇. 一.在Map端进行连接使用场景:一张表十分小.一张表很大.用法: ...

  4. OCM_第十五天课程:Section6 —》数据库性能调优 _SQL 访问建议 /SQL 性能分析器/配置基线模板/SQL 执行计划管理/实例限制

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  5. supervisor安装部署文档和管理实例

    Supervisord是用Python实现的一款非常实用的进程管理工具,类似于monit(关于monit见我的博客:用monit监控系统关键进程),monit和supervisord的一个比较大的差异 ...

  6. hadoop中MapReduce多种join实现实例分析

    转载自:http://zengzhaozheng.blog.51cto.com/8219051/1392961 1.在Reudce端进行连接. 在Reudce端进行连接是MapReduce框架进行表之 ...

  7. 【甘道夫】官方网站MapReduce代码注释具体实例

    引言 1.本文不描写叙述MapReduce入门知识,这类知识网上非常多.请自行查阅 2.本文的实例代码来自官网 http://hadoop.apache.org/docs/current/hadoop ...

  8. MapReduce三种join实例分析

    本文引自吴超博客 实现原理 1.在Reudce端进行连接. 在Reudce端进行连接是MapReduce框架进行表之间join操作最为常见的模式,其具体的实现原理如下: Map端的主要工作:为来自不同 ...

  9. MapReduce多种join实现实例分析(一)

    一.概述    对于RDBMS中的join操作大伙一定非常熟悉,写sql的时候要十分注意细节,稍有差池就会耗时巨久造成很大的性能瓶颈,而在Hadoop中使用MapReduce框架进行join的操作时同 ...

随机推荐

  1. RedHat版的linux安装yum源及redis

    一.前言 最近正在学习redis,但是在安装redis的时候遇到很多坎,在此记录一下. 硬件环境:我用 VMware Workstation Pro 12 安装 Red Hat Enterprise ...

  2. 【java基础】IOC介绍及其简单实现

    控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. 控制反转一般分为两种类型,依赖注入 ...

  3. python的闭包与装饰器

    原文发表在我的博客主页,转载请注明出处 前言 如果把python当作脚本语言,每次就是写个几十行上百行来处理数据的话,装饰器也许不是很必要,但是如果要开发一个大型系统,装饰器是躲不开的,最开始体会ry ...

  4. python selenuim使用代理的方式

    一.FireFox浏览器 myProxy = "60.195.250.55:80" proxy = Proxy({ 'proxyType': ProxyType.MANUAL, ' ...

  5. python3 入门 (二) 列表的使用

    列表用于组织其它数值,即写在方括号之间.用逗号分隔开的数值列表.列表内的项目不必全是相同的类型. 列表的定义 student = ['Tom', 'Jack', 'Avril'] 添加元素 将另一个列 ...

  6. [转载]使用HttpWebRequest进行请求时发生错误:基础连接已关闭,发送时发生错误处理

    转载,原文来自 http://blog.csdn.net/hawksoft/article/details/21776009 最近调试原来的微信模拟登陆时发生了“基础连接已关闭,发送时发生错误”的错误 ...

  7. 工作的思考十七:工作中容易犯的错误 - Delay

    其实IT是一个很严谨的行业,不管是从代码角度还是从日常的工作分配都是按计划来的. 从今年年初到现在,在我的工作中出现了两次“Delay”,第一次不以为然,虽然上司也找过我谈话,但没意识到问题的严重性. ...

  8. AngularJS开发指南10:AngularJS依赖注入的详解

    依赖注入是一种软件设计模式,用来处理代码的依赖关系. 一般来说有三种方法让函数获得它需要的依赖: 它的依赖是能被创建的,一般用new操作符就行. 能够通过全局变量查找依赖. 依赖能在需要时被导入. 前 ...

  9. 在Linux中怎么把用户添加到组中

    (1)添加用户test,初始密码123456,该用户的主目录为/home/share,用户的基本组为root,用户的shell为/bin/tcsh,要求将该用户加到mail和new组中.请问该怎么做啊 ...

  10. 【FE前端学习】第二阶段任务-基础

    技能学习部分: 1.需要熟练掌握HTML标签以及CSS各个常用属性. 2.掌握CSS3 常用属性 3.掌握jquery的基本用法,对于JS基本逻辑语句需要熟练掌握 上文 [FE前端学习]第二阶段任务- ...