看了题解,自己大概想了下。

最小割唯一的充分必要条件是残量网络中所有点要嘛能从源点floodfill到要嘛能floodfill到汇点。

必要性,这是当然的,因为假设从源点floodfill或者从汇点反着floodfill得到的集合若不相补,那这就有两个最小割的方案,最小割不唯一。

充分性,首先这样就找到一个最小割,它在两次floodfill的交界处,假设还存在另一个最小割在靠近源点或者靠近汇点处那必然floodfill时找到的是它,这与另一个最小割矛盾,所以仅存在这么一个在交界处的最小割。

于是我就胡乱证明完毕了。。。

 #include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 888
#define MAXM 40000 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int cnt1,cnt2;
bool vis1[MAXN],vis2[MAXN];
void dfs1(int u){
++cnt1;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(vis1[v] || edge[i].cap==edge[i].flow) continue;
vis1[v]=;
dfs1(v);
}
}
void dfs2(int u){
++cnt2;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(vis2[v] || edge[i^].cap==edge[i^].flow) continue;
vis2[v]=;
dfs2(v);
}
}
int main(){
int m,a,b,c;
while(~scanf("%d%d%d%d",&NV,&m,&vs,&vt)&&(NV||m||vs||vt)){
NE=;
memset(head,-,sizeof(head));
while(m--){
scanf("%d%d%d",&a,&b,&c);
if(a==b) continue;
addEdge(a,b,c);
addEdge(b,a,c);
}
ISAP(); cnt1=cnt2=;
memset(vis1,,sizeof(vis1));
memset(vis2,,sizeof(vis2));
vis1[vs]=; vis2[vt]=;
dfs1(vs); dfs2(vt); if(cnt1+cnt2==NV) puts("UNIQUE");
else puts("AMBIGUOUS");
}
return ;
}

ZOJ2587 Unique Attack(判定最小割唯一性)的更多相关文章

  1. ZOJ 2587 Unique Attack(最小割唯一性判断)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2587 题意:判断最小割是否唯一. 思路: 最小割唯一性的判断是先跑一遍最大 ...

  2. ZOJ - 2587 Unique Attack (判断最小割是否唯一)

    题意:判断最小割是否唯一. 分析:跑出最大流后,在残余网上从源点和汇点分别dfs一次,对访问的点都打上标记. 若还有点没有被访问到,说明最小割不唯一. https://www.cnblogs.com/ ...

  3. zoj 2587 Unique Attack【最小割】

    拆点拆魔怔了 直接按照原图建就行,这里有个小技巧就是双向边的话不用按着板子建(u,v,c)(v,u,0)(v,u,c)(u,v,0),直接建(u,v,c)(v,u,c)会快十倍!800ms->8 ...

  4. ZOJ 2587 Unique Attack (最小割唯一性)

    题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边( ...

  5. BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】

    题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...

  6. [ZOJ2587]Unique Attack

    vjudge sol 最小割判定唯一性. 只要做完一个任意最小割后,判断一下是不是所有点都要么和\(S\)相连,要么和\(T\)相连. 只要两边各一次\(dfs\)就行了. code #include ...

  7. ZOJ2930 The Worst Schedule(最小割)

    题目大概说有n个任务,每个任务可以提前或推迟,提前或推迟各有一定的费用,有的任务一旦推迟另一个任务也必须推迟,问怎么安排任务使花费最少,且最少花费的条件下提前的任务数最多能多少. 问题就是要把各个任务 ...

  8. BZOJ 1797 最小割(最小割割边唯一性判定)

    问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题. 最小割唯一性判定 jcvb: 在残余网络上跑ta ...

  9. zoj 2587 Unique Attack 最小割判定

    题目链接 让你判断最小割是否唯一. 判断方法是, 先求一遍最大流, 然后从源点dfs一次, 搜索未饱和边的数目. 从汇点dfs一次, 同样也是搜索未饱和边的数目, 看总和是否等于n. 如果等于n那么唯 ...

随机推荐

  1. opencv中,c和c++版本区别体验

    参考:http://www.cnblogs.com/tornadomeet/archive/2012/04/29/2476277.html

  2. How to: Set up Openswan L2TP VPN Server on CentOS 6

    Have you ever wanted to set up your own VPN server? By following the steps below, you can set up you ...

  3. 详解mysql int类型的长度值问题

    我的朋友海滨问我mysql在建表的时候int类型后的长度代表什么? 是该列允许存储值的最大宽度吗? 为什么我设置成int(1), 也一样能存10,100,1000呢. 当时我虽然知道int(1),这个 ...

  4. 经典的SQL面试题

    SQL中 inner join. left join .right join. outer join之间的区别 A表(a1,b1,c1) B表(a2,b2) a1 b1 c1 a2 b2 01 数学 ...

  5. 【JavaScript】SVG vs Canvas vs WebGL

    参考资料: http://blog.csdn.net/lufy_legend/article/details/38292125 http://zhidao.baidu.com/link?url=e4n ...

  6. mysql源码:关于innodb中两次写的探索

    两次写可以说是在Innodb中很独特的一个功能点,而关于它的说明或者解释非常少,至于它存在的原因更没有多少文章来说,所以我打算专门对它做一次说明. 首先说明一下为什么会有两次写这个东西:因为innod ...

  7. Live Archive 3644 X-Plosives 解题报告

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=1 ...

  8. Spring配置JNDI的解决方案

    我的配置环境是:Spring + Tomcat + MySql 说明: 1. $TOMCAT_HOME代表Tomcat的安装目录. 第一步:在Tomcat的$TOMCAT_HOME/conf/cont ...

  9. C++调用Object-C界面

    在C++代码中想调用显示一个IOS界面,使用NSNotificationCenter 1.在界面中注册消息 [[NSNotificationCenter defaultCenter]  addObse ...

  10. stm32——RTC实时时钟

    stm32——RTC实时时钟 一.关于时间 2038年问题 在计算机应用上,2038年问题可能会导致某些软件在2038年无法正常工作.所有使用UNIX时间表示时间的程序都将将受其影响,因为它们以自19 ...