f(x)=|ax3+bx2+cx+d|

求f(x)在L≤x≤R的最大值。

分析

参数有可能是0,注意分类讨论

1.当a=0时

  b=0,f为一次函数(c≠0)或者常数函数(c=0),最大值点在区间端点。

  b≠0,f为二次函数,最大值点在区间端点或者x0=c/(2*b),当L≤x0≤R时,ans=max{f(L),f(R),f(x0)}。

2.当a≠0时,f为三次函数

  最大值点在区间端点或者导函数的零点x1,x2

  注意x1,x2是否在[L,R]区间。

代码

#include<cstdio>
#include<algorithm>
#include<cmath>
#define dd double using namespace std; dd a,b,c,d,l,r;
dd f(dd x)
{
return fabs(a*x*x*x+b*x*x+c*x+d);
}
void ff(dd a,dd b,dd c,dd& ans)
{
if(a==)
{
if(b==) return;
ans=max(ans,f(-c/b));
return;
}
if(b*b<*a*c) return;
dd q=sqrt(b*b-*a*c);
dd x1=(-q-b)/(*a);
dd x2=(q-b)/(*a);
if(l<x1&&x1<r)
{
ans=max(ans,f(x1));
if(r>x2) ans=max(ans,f(x2));
}
else if(l<x2&&x2<r) ans=max(ans,f(x2));
}
int main()
{
while(~scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&l,&r))
{
dd ans;
ans=max(f(l),f(r));
ff(*a,*b,c,ans);
printf("%.2lf\n",ans);
}
return ;
}

下面这样写,省了判断区间和顶点的不同位置关系。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define dd double using namespace std; dd a,b,c,d,l,r,ans;
dd f(dd x)
{
if(x<l||x>r)return -;
return fabs(a*x*x*x+b*x*x+c*x+d);
}
dd ff(dd a,dd b,dd c)
{
if(a==)
{
if(b==) return -;
return f(-c/b);
}
if(b*b<*a*c) return -;
dd q=sqrt(b*b-*a*c);
dd x1=(-q-b)/a;
dd x2=(q-b)/a;
return max(f(x1/),f(x2/));
}
int main()
{
while(~scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&l,&r))
{
ans=max(f(l),f(r));
ans=max(ans,ff(*a,*b,c));
printf("%.2lf\n",ans);
}
return ;
}

【HDU 5105】Math Problem的更多相关文章

  1. 【HDU 5858】Hard problem

    边长是L的正方形,然后两个半径为L的圆弧和中间半径为L的圆相交.求阴影部分面积. 以中间圆心为原点,对角线为xy轴建立直角坐标系. 然后可以联立方程解出交点. 交点是$(\frac{\sqrt{7} ...

  2. 【HDU 5858】Hard problem(圆部分面积)

    边长是L的正方形,然后两个半径为L的圆弧和中间直径为L的圆相交.求阴影部分面积. 以中间圆心为原点,对角线为xy轴建立直角坐标系. 然后可以联立方程解出交点. 交点是$(\frac{\sqrt{7} ...

  3. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  4. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  5. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  6. [HDU - 5170GTY's math problem 数的精度类

    题目链接:HDU - 5170GTY's math problem 题目描述 Description GTY is a GodBull who will get an Au in NOI . To h ...

  7. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  8. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  9. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

随机推荐

  1. 怎样在python中获取时间?

    from time import strftime date = strftime('%y%m%d') hour = strftime('%H%M%S')

  2. python中BeautifulSoup库中find函数

    http://www.crummy.com/software/BeautifulSoup/bs3/documentation.zh.html#contents 简单的用法: find(name, at ...

  3. React/React Native 的ES5 ES6写法对照表

    //es6与es5的区别很多React/React Native的初学者都被ES6的问题迷惑:各路大神都建议我们直接学习ES6的语法(class Foo extends React.Component ...

  4. lvm之创建/扩容/缩容/快照及关闭的全部流程操作记录

    基本介绍Linux用户安装Linux 操作系统时遇到的一个最常见的难以决定的问题就是如何正确地给评估各分区大小,以分配合适的硬盘空间.随着 Linux的逻辑盘卷管理功能的出现,这些问题都迎刃而解, l ...

  5. mybatis-config.xml详解

    <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE configuration PUBLIC ...

  6. 12Spring_AOP编程(AspectJ)_前置通知

    接下里的博客会一篇一篇的讲解每一个通知.其实AOP_AspectJ的编程与传统的AOP的编程的最大的区别就是写一个Aspect 支持多个Advice和多个PointCut .而且我们写AOP_Aspc ...

  7. SQL 数据结构操作语句

    修改字段 exec sp_rename '表名.[字段名]','新字段名','column' alter table tab_info rename column createname to this ...

  8. Toolbar的使用

    项目来源: https://github.com/xuwj/ToolbarDemo#userconsent# 一.V7包升级问题 折腾好久,终于解决 <style name="AppT ...

  9. 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  10. Tomcat简易安装指南

    由于要学习activiti的使用,而activiti依赖于tomcat,所以下载了一个tomcat 7 的binary包,然后按照running.TXT中的描述来手动安装,下文主要是记录了在阅读run ...