精进之路之lru
原理
LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
实现1
最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:
1. 新数据插入到链表头部;
2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
3. 当链表满的时候,将链表尾部的数据丢弃。
分析
【命中率】
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。
【复杂度】
实现简单。
【代价】
命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。
使用LinkedHashMap实现
LinkedHashMap底层就是用的HashMap加双链表实现的,而且本身已经实现了按照访问顺序的存储。此外,LinkedHashMap中本身就实现了一个方法removeEldestEntry用于判断是否需要移除最不常读取的数,方法默认是直接返回false,不会移除元素,所以需要重写该方法。即当缓存满后就移除最不常用的数。
public class LRUCache<K, V> extends LinkedHashMap<K, V> { private static final long serialVersionUID = 1L; //缓存大小 private int cacheSize; public LRUCache(int cacheSize) { //第三个参数true是关键 super(10, 0.75f, true); this.cacheSize = cacheSize; } /** * 缓存是否已满 */ @Override protected boolean removeEldestEntry(Map.Entry<K, V> eldest) { boolean r = size() > cacheSize; if (r) { System.out.println("清除缓存key:" + eldest.getKey()); } return r; } //测试 public static void main(String[] args) { LRUCache<String, String> cache = new LRUCache<String, String>(5); cache.put("1", "1"); cache.put("2", "2"); cache.put("3", "3"); cache.put("4", "4"); cache.put("5", "5"); System.out.println("初始化:"); System.out.println(cache.keySet()); System.out.println("访问3:"); cache.get("3"); System.out.println(cache.keySet()); System.out.println("访问2:"); cache.get("2"); System.out.println(cache.keySet()); System.out.println("增加数据6,7:"); cache.put("6", "6"); cache.put("7", "7"); System.out.println(cache.keySet()); }
实现2
LRUCache的链表+HashMap实现
传统意义的LRU算法是为每一个Cache对象设置一个计数器,每次Cache命中则给计数器+1,而Cache用完,需要淘汰旧内容,放置新内容时,就查看所有的计数器,并将最少使用的内容替换掉。 它的弊端很明显,如果Cache的数量少,问题不会很大, 但是如果Cache的空间过大,达到10W或者100W以上,一旦需要淘汰,则需要遍历所有计算器,其性能与资源消耗是巨大的。效率也就非常的慢了。它的原理: 将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。上面说了这么多的理论, 下面用代码来实现一个LRU策略的缓存。非线程安全,若实现安全,则在响应的方法加锁。
public class LRUCacheDemo<K, V> { private int currentCacheSize; private int CacheCapcity; private HashMap<K, CacheNode> caches; private CacheNode first; private CacheNode last; public LRUCacheDemo(int size) { currentCacheSize = 0; this.CacheCapcity = size; caches = new HashMap<>(size); } public void put(K k, V v) { CacheNode node = caches.get(k); if (node == null) { if (caches.size() >= CacheCapcity) { caches.remove(last.key); removeLast(); } node = new CacheNode(); node.key = k; } node.value = v; moveToFirst(node); caches.put(k, node); } public Object get(K k) { CacheNode node = caches.get(k); if (node == null) { return null; } moveToFirst(node); return node.value; } public Object remove(K k) { CacheNode node = caches.get(k); if (node != null) { if (node.pre != null) { node.pre.next = node.next; } if (node.next != null) { node.next.pre = node.pre; } if (node == first) { first = node.next; } if (node == last) { last = node.pre; } } return caches.remove(k); } public void clear() { first = null; last = null; caches.clear(); } private void moveToFirst(CacheNode node) { if (first == node) { return; } if (node.next != null) { node.next.pre = node.pre; } if (node.pre != null) { node.pre.next = node.next; } if (node == last) { last = last.pre; } if (first == null || last == null) { first = last = node; return; } node.next = first; first.pre = node; first = node; first.pre = null; } private void removeLast() { if (last != null) { last = last.pre; if (last == null) { first = null; } else { last.next = null; } } } @Override public String toString() { StringBuilder sb = new StringBuilder(); CacheNode node = first; while (node != null) { sb.append(String.format("%s:%s ", node.key, node.value)); node = node.next; } return sb.toString(); } class CacheNode { CacheNode pre; CacheNode next; Object key; Object value; public CacheNode() { } } public static void main(String[] args) { LRUCache<Integer, String> lru = new LRUCache<Integer, String>(3); lru.put(1, "a"); // 1:a System.out.println(lru.toString()); lru.put(2, "b"); // 2:b 1:a System.out.println(lru.toString()); lru.put(3, "c"); // 3:c 2:b 1:a System.out.println(lru.toString()); lru.put(4, "d"); // 4:d 3:c 2:b System.out.println(lru.toString()); lru.put(1, "aa"); // 1:aa 4:d 3:c System.out.println(lru.toString()); lru.put(2, "bb"); // 2:bb 1:aa 4:d System.out.println(lru.toString()); lru.put(5, "e"); // 5:e 2:bb 1:aa System.out.println(lru.toString()); lru.get(1); // 1:aa 5:e 2:bb System.out.println(lru.toString()); lru.remove(11); // 1:aa 5:e 2:bb System.out.println(lru.toString()); lru.remove(1); //5:e 2:bb System.out.println(lru.toString()); lru.put(1, "aaa"); //1:aaa 5:e 2:bb System.out.println(lru.toString()); } }
扩展:
扩展
1.LRU-K
LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。
相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。
数据第一次被访问时,加入到历史访问列表,如果数据在访问历史列表中没有达到K次访问,则按照一定的规则(FIFO,LRU)淘汰;当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列中删除,将数据移到缓存队列中,并缓存数据,缓存队列重新按照时间排序;缓存数据队列中被再次访问后,重新排序,需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即“淘汰倒数K次访问离现在最久的数据”。
LRU-K具有LRU的优点,同时还能避免LRU的缺点,实际应用中LRU-2是综合最优的选择。由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多
本文参考整理于 https://blog.csdn.net/wangxilong1991/article/details/70172302 ,https://blog.csdn.net/elricboa/article/details/78847305,感谢原作者的精彩分享!!!
精进之路之lru的更多相关文章
- python精进之路1---基础数据类型
python精进之路1---基本数据类型 python的基本数据类型如上图,重点需要掌握字符串.列表和字典. 一.int.float类型 int主要是用于整数类型计算,float主要用于小数. int ...
- ❤️【Android精进之路-01】定计划,重行动来学Android吧❤️
您好,我是码农飞哥,感谢您阅读本文,欢迎一键三连哦. Android精进之路第一篇,确定安卓学习计划. 干货满满,建议收藏,需要用到时常看看.小伙伴们如有问题及需要,欢迎踊跃留言哦~ ~ ~. 前言 ...
- 《Go 精进之路》 读书笔记 (第一次更新)
<Go 精进之路> 读书笔记.简要记录自己打五角星的部分,方便复习巩固.目前看到p120 Go 语言遵从的设计哲学为组合 垂直组合:类型嵌入,快速让一个类型复用其他类型已经实现的能力,实现 ...
- python精进之路 -- open函数
下面是python中builtins文件里对open函数的定义,我将英文按照我的理解翻译成中文,方便以后查看. def open(file, mode='r', buffering=None, enc ...
- 精进之路之AQS及相关组件
AQS ( AbstractQueuedSynchronizer)是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Sem ...
- 精进之路之CAS
CAS (Compare And Swap) 即比较交换, 是一种实现并发算法时常用到的技术,Java并发包中的很多类都使用了CAS技术,本文将深入的介绍CAS的原理. 其算法核心思想如下 执行函数: ...
- 精进之路之volatile
volatile 首先了解下Java 内存模型中的可见性.原子性和有序性. 可见性: 可见性是一种复杂的属性,因为可见性中的错误总是会违背我们的直觉.通常,我们无法确保执行读操作的线程能适时地看到其他 ...
- 精进之路之JMM
JMM (Java Memory Model) java内存模型 Java内存模型的抽象 Java线程之间的通信由Java内存模型(本文简称为JMM)控制,JMM决定一个线程对共享变量的写入何时对另一 ...
- 精进之路之HashMap
HashMap本质的核心就是“数组+链表”,数组对于访问速度很快,而链表的优势在于插入速度快,HashMap集二者于一身. 提到HashMap,我们不得不提各个版本对于HashMap的不同.本文中先从 ...
随机推荐
- k个一组翻转链表(java实现)
题目: 给出一个链表,每 k 个节点一组进行翻转,并返回翻转后的链表. k 是一个正整数,它的值小于或等于链表的长度.如果节点总数不是 k 的整数倍,那么将最后剩余节点保持原有顺序. 示例 : 给定这 ...
- fiddler抓不到chrome浏览器的请求
今天遇到一个非常尴尬的问题,接口在某种情况下会报错,此时前端会展示NAN之类的东西,由于复现不了,接口现在一直不报 错了,所以就让前端做了个友好提示, 当接口报错时,给个提示“请稍后重试” ,我要测试 ...
- SWPU新闻后台登录页面
最终效果图: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <ti ...
- CSS设计模式
关于web设计的网站 https://www.smashingmagazine.com/
- js点击加载更多可以增加几条数据的显示
<div class="list"> <div class="one"> <div class="img" ...
- 【MIT-6.824】Lab 1: MapReduce
Lab 1链接:https://pdos.csail.mit.edu/6.824/labs/lab-1.html Part I: Map/Reduce input and output Part I需 ...
- 移动端遇到的问题小结--video
本篇主要是针对Android系统,所遇到的问题. 1. video的全屏处理: 这里说的全屏是指针对浏览器的全屏,而不是整个手机的全屏.要想全屏效果只需对video标签加 webkit-plays ...
- Eclipse手动添加web.xml
当创建web工程时,没有自动创建web.xml 这时候就需要手动添加web.xml 该怎么做呢 右键项目,点击java EE Tools 其中点击Genertate Deployment Descri ...
- JSON.stringify()方法是将一个javascript值(对象或者数组)转换成为一个JSON字符串;JSON.parse()解析JSON字符串,构造由字符串描述的javascript值或对象
JSON.stringify()方法是将一个javascript值(对象或者数组)转换成为一个JSON字符串:JSON.parse()解析JSON字符串,构造由字符串描述的javascript值或对象
- String字符串的常用方法
1.substr():可在字符串中抽取从 start 下标开始的指定数目的字符. stringObject.substr(start,length) start:必需.要抽取的子串的起始下标.必须是数 ...