动态规划----最长递增子序列问题(LIS)
题目:
输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列)。
暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2)。
动态规划:之前我们使用动态规划去解决一般是创建一维数组或者二维数组来构建出dp表,利用之前的历史上dp表中的值进行相关的处理求解出这个过程中的几个最大值,最小值,然后相加减来得出dp表的当前元素的值,所以我们会想,先创建一个一维数组,因为数组中选择的元素的范围在进行变化,所以dp表表示的值为截取到当前范围内最长的递增子序列是多少,但是在填表的过程中发现这种一般方法是不行的。但是这作为一道经典的题目,思路本身是很难的,有人想出来了它的dp解法,我们可以通过借鉴它的思路来帮助我们扩展理解dp算法。
那么它的思路是:dp[i]表示的意思是必须包含以dp[i]结尾的最长递增子序列,那么它的值就是以dp[i]结尾的最长递增子序列长度。依次去扫描dp[i]这个字符之前的字符,假如发现当前字符大于之前的字符那么比较当前的最长子序列的长度与当前dp[i] + 1的值的大小来更新当前最长递增子序列的长度,当扫描完当前字符i之前的字符那么这个时候说明找到了以当前字符结尾的最长递增子序列的长度,把这个值赋值给dp[i]。
需要注意的是最后还需要扫描一下dp数组,看一下哪一个dp[i]最大,因为我们不知道以哪个字符结尾的字符序列为最长的递增子序列,所以需要扫描一下,最后找到dp[i]的最大值返回,这是与之前的dp数组不同的一个点,以前是返回dp数组的最后一个元素就可以了,因为最后一个元素就是我们需要求解的最优解。这个解法时间复杂度也是O(N2)。
那解法三的思路呢:dp[i]表示的是长度为i的最长递增子序列的末尾的那个数。先初始化dp[0]为数组中第一个元素的值,即dp[0] = 4,定义一个指针p用来记录当前递增子序列的位置,从数组的第二个元素开始比较当前arr[i]与当前指针指向的dp数组的位置的值的大小,假如arr[i] > dp[p]那么说明当前的字符可以构成更长的递增子序列那么我们应该更新dp数组,指针往下移动,然后把当前的arr[i]的值赋值给dp[++p],假如arr[i] < dp[p]说明当前字符不能够构成更长的递增子序列,此时需要进行元素的替换,为什么进行替换呢?因为当前更小的元素更有利于最长递增子序列的贡献,所以扫描dp数组指向位置以及之前的位置假如arr[i] 大于dp[p]那么我们将其dp[p] 替换为arr[i]
最后返回的是指针p指向的位置,注意返回最长递增子序列的长度是p指向的下标,这也是与之前动态规划的一般解法不同的点。更进一步的优化就是这种解法在扫描dp数组的过程中可以通过二分查找来降低时间复杂度,整体从O(N2)降低到O(NlgN)。
代码:
package chapter_08_贪心策略与动态规划; public class 最长递增子序列 {
static int[] arr = { 4, 2, 3, 1, 5, 6, 4, 8, 5, 9 }; public static void main(String[] args) {
System.out.println(f(arr)); // 输出 6
System.out.println(dp(arr)); // 输出 6
System.out.println(dp1(arr)); // 输出 6
} // 暴力破解法
private static int f(int[] arr) {
int maxCnt = 0;
for (int i = 0; i < arr.length; i++) {
int p = i;
int cnt = 1;
for (int j = i + 1; j < arr.length; j++) {
if (arr[j] > arr[p]) {
cnt++;
p = j;
}
}
// if (cnt>maxCnt){
// maxCnt=cnt;
// }
maxCnt = Math.max(maxCnt, cnt);
}
return maxCnt; } static int[] dp = new int[arr.length]; // 解法二
private static int dp(int[] arr) {
dp[0] = 1; for (int i = 1; i < arr.length; i++) {
int cnt = 1;
for (int j = i - 1; j >= 0; j--) {
if (arr[i] > arr[j]) {
cnt = Math.max(cnt, dp[j] + 1);
}
}
dp[i] = cnt; }
int ans = -1;
for (int i = 0; i < dp.length; i++) {
ans = Math.max(ans, dp[i]);
}
return ans;
} // 解法三
/* 在优化之后,可以达到O(NlgN) */
private static int dp1(int[] arr) {
dp = new int[arr.length + 1];
dp[1] = arr[0];// 长度为1的最长递增子序列,初始化为第一个元素
int p = 1;// 记录dp更新的最后位置
for (int i = 1; i < arr.length; i++) {
if (arr[i] > dp[p]) {
dp[p + 1] = arr[i];
p++;
} else {
//扫描dp数组,替换第一个比arr[i]大的dp
//for (int j = 0; j <= p; j++) {
// if (dp[j] > arr[i]) {
// dp[j] = arr[i];
// }
//}
// 二分查找,比上面扫描dp数组耗时少
int indexOfFirstBigger = indexOfFirstBigger(dp, arr[i], 0, p);
if (indexOfFirstBigger != -1)
dp[indexOfFirstBigger] = arr[i];
}
} return p;
} /**
* 在递增数组中,从左查找第一个比v大的元素的下标
*/
public static int indexOfFirstBigger(int[] dp, int v, int l, int r) {
while (l <= r) {
int mid = (l + r) >> 1;
if (dp[mid] > v) {
r = mid; // 保留大于v的下标以防这是第一个
} else {
l = mid + 1;
}
if (l == r && dp[l] > v)
return l;
}
return -1;
}
}
动态规划----最长递增子序列问题(LIS)的更多相关文章
- 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- 最长递增子序列(LIS)(转)
最长递增子序列(LIS) 本博文转自作者:Yx.Ac 文章来源:勇幸|Thinking (http://www.ahathinking.com) --- 最长递增子序列又叫做最长上升子序列 ...
- [51Nod 1218] 最长递增子序列 V2 (LIS)
传送门 Description 数组A包含N个整数.设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可 ...
- 算法之动态规划(最长递增子序列——LIS)
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...
- 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法
1.题目描述 给定数组arr,返回arr的最长递增子序列. 2.举例 arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答 ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- Python动态规划求解最长递增子序列(LIS)
原始代码错误,移步博客查看O(N^2)及优化的O(N*logN)的实现:每天一道编程题--最长递增子序列
- 动态规划之最长递增子序列(LIS)
在一个已知的序列{ a1,a2,……am}中,取出若干数组成新的序列{ ai1, ai2,…… aim},其中下标 i1,i2, ……im保持递增,即新数列中的各个数之间依旧保持原数列中 ...
- hdu1257最少拦截系统 动态规划(最长递增子序列(LIS))
Problem Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能超过前一发的高 ...
随机推荐
- 删除 $PATH 路径下多余的文件地址
将如下去 多余文件删除就可以了
- OpenStack—nova组件计算服务
nova介绍: Nova 是 OpenStack 最核心的服务,负责维护和管理云环境的计算资源.OpenStack 作为 IaaS 的云操作系统,虚拟机生命周期管理也就是通过 Nova 来实现的. 用 ...
- UNIX哲理名言(中英文对照)
UNIX 的特点: Everything (including hardware) is a file.所有的事物(甚至硬件本身)都是一个的文件. Configuration data stored ...
- OpenCV-Python:轮廓
啥叫轮廓 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 轮廓与边缘很相似,但轮廓是连续的,边缘并不全都连续,其实边缘主要是作为图像的特征使用,比如用边缘特征可以区分脸和手,而轮廓主要用来分析 ...
- python的学习之路(一)
1.python的简介 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为AB ...
- nginx windows could not build server_names_hash, you should increase server_names_hash_bucket_size: 32
nginx 为windows版本 在配置文件nginx.conf 的http{}段增加一行配置 server_names_hash_bucket_size 64; 如果64不够可以设128等
- 【WPF开发备忘】使用MVVM模式开发中列表控件内的按钮事件无法触发解决方法
实际使用MVVM进行WPF开发的时候,可能会用到列表控件中每行一个编辑或删除按钮,这时直接去绑定,发现无法响应: <DataGridTemplateColumn Header="操作& ...
- Django----使用模板系统渲染博客页面、实现列表和详情页的跳转、前后跳转功能
.模板写法同Flask,可以参考之前的FLask-模板 .将之前的BootStrap静态页面中的数据使用模板写 <!DOCTYPE html> <html lang="en ...
- King 差分约束 判负环
给出n个不等式 给出四个参数第一个数i可以代表序列的第几项,然后给出n,这样前面两个数就可以描述为ai+a(i+1)+...a(i+n),即从i到n的连续和,再给出一个符号和一个ki当符号为gt代表‘ ...
- 期末Java Web大作业----简易的学生管理系统
学生信息管理系统(大作业) 2018-12-21:此文章已在我的网站更新,添加视图介绍等信息,源码请移步下载https://www.jeson.xin/javaweb-sims.html PS:首先不 ...