4197: [Noi2015]寿司晚宴

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 694  Solved: 440
[Submit][Status][Discuss]

Description

为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。
现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。
现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。
 

Input

输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。

 

Output

输出一行包含 1 个整数,表示所求的方案模 p 的结果。

 

Sample Input

3 10000

Sample Output

9

HINT

2≤n≤500

0<p≤1000000000

Source

Solution

这数据范围一眼看上去是没什么头绪的,但是可以进行一些猜想

选一个数,相当于选他的质因子,所以考虑筛一下$500$以内的质数,发现有接近$100$个,然后对于一个数$n$,它的大于等于$\sqrt n$的质因数至多有一个

然后$\sqrt 500$以内的质数只有$8$个,这就很好搞了,状压一下.

对于每个数记录它小于$\sqrt 500$以内的质因数的情况,再额外记录一下它大于$\sqrt 500$的质因数,这样就可以dp了.

显然对于大于$\sqrt 500$的质因数相同的数需要同时dp,这样分两次dp即可.

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXN 510
int flag[MAXN],prime[MAXN],cnt;
inline void Pre()
{
flag[1]=1;
for (int i=2; i<=sqrt(500); i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=1; j<=cnt&&i*prime[j]<=sqrt(500); j++)
{
flag[i*prime[j]]=1;
if (!(i%prime[j])) break;
}
}
// for (int i=1; i<=cnt; i++) printf("%d ",prime[i]); puts("");
}
struct Node{int p1,p2;}a[MAXN];
inline bool cmp(Node A,Node B) {return A.p2==B.p2? A.p1<B.p1:A.p2<B.p2;}
int dp[1<<8][1<<8],tmp[2][1<<8][1<<8],N,ans,P;
int main()
{
Pre();
scanf("%d%d",&N,&P);
for (int i=2; i<=N; i++)
{
int x=i;
for (int j=1; j<=cnt; j++)
{
if (!(x%prime[j]))
a[i-1].p1|=(1<<(j-1));
while (!(x%prime[j])) x/=prime[j];
}
if (x>sqrt(500)) a[i-1].p2=x; else a[i-1].p2=0;
}
sort(a+1,a+N-1+1,cmp);
dp[0][0]=1;
int last=1;
for (int i=1; i<=N-1; last++,i++)
{
if (a[i].p2) break;
memcpy(tmp[0],dp,sizeof(tmp[0])); memcpy(tmp[1],dp,sizeof(tmp[1]));
for (int j=(1<<8)-1; j>=0; j--)
for (int k=(1<<8)-1; k>=0; k--)
{
if (!(k&a[i].p1))
(tmp[0][j|a[i].p1][k]+=tmp[0][j][k])%=P;
if (!(j&a[i].p1))
(tmp[1][j][k|a[i].p1]+=tmp[1][j][k])%=P;
}
for (int j=0; j<(1<<8); j++)
for (int k=0; k<(1<<8); k++)
dp[j][k]=((tmp[0][j][k]+tmp[1][j][k]-dp[j][k])%P+P)%P;
}
while (last<N)
{
memcpy(tmp[0],dp,sizeof(tmp[0])); memcpy(tmp[1],dp,sizeof(tmp[1]));
for (int i=last; i<=N-1; last++,i++)
{
for (int j=(1<<8)-1; j>=0; j--)
for (int k=(1<<8)-1; k>=0; k--)
{
if (!(k&a[i].p1))
(tmp[0][j|a[i].p1][k]+=tmp[0][j][k])%=P;
if (!(j&a[i].p1))
(tmp[1][j][k|a[i].p1]+=tmp[1][j][k])%=P;
}
if (a[i].p2!=a[i+1].p2) break;
}
last++;
for (int j=0; j<(1<<8); j++)
for (int k=0; k<(1<<8); k++)
dp[j][k]=((tmp[0][j][k]+tmp[1][j][k]-dp[j][k])%P+P)%P;
}
for (int j=0; j<(1<<8); j++)
for (int k=0; k<(1<<8); k++)
if (!(j&k)) (ans+=dp[j][k])%=P;
printf("%d\n",ans);
return 0;
}

  

【BZOJ-4197】寿司晚宴 状压DP的更多相关文章

  1. UOJ 129/BZOJ 4197 寿司晚宴 状压DP

    //By SiriusRen #include <cstdio> #include <algorithm> using namespace std; ; struct Node ...

  2. NOI 2015 寿司晚宴 (状压DP+分组背包)

    题目大意:两个人从2~n中随意取几个数(不取也算作一种方案),被一个人取过的数不能被另一个人再取.两个人合法的取法是,其中一个人取的任何数必须与另一个人取的每一个数都互质,求所有合法的方案数 (数据范 ...

  3. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  4. BZOJ 4197: [Noi2015]寿司晚宴 状压dp+质因数分解

    挺神的一道题 ~ 由于两个人选的数字不能有互质的情况,所以说对于一个质因子来说,如果 1 选了,则 2 不能选任何整除该质因子的数. 然后,我们发现对于 1 ~ 500 的数字来说,只可能有一个大于 ...

  5. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  6. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  7. B4197 [Noi2015]寿司晚宴 状压dp

    这个题一开始想到了唯一分解定理,然后状压.但是显然数组开不下,后来想到每个数(n<500)大于19的素因子只可能有一个,所以直接单独存就行了. 然后正常状压dp就很好搞了. 题干: Descri ...

  8. bzoj4197 [Noi2015]寿司晚宴——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...

  9. [NOI2015][bzoj4197] 寿司晚宴 [状压dp+质因数]

    题面 传送门 思路 首先,要让两个人选的数字全部互质,那么有一个显然的充要条件:甲选的数字的质因数集合和乙选的数字的质因数集合没有交集 30pt 这种情况下n<=30,也就是说可用的质数只有10 ...

随机推荐

  1. Spring在web应用中获得Bean的方法

    一:使用ApplicationContext获得Bean 首先新建一个类,该类必须实现ApplicationContextAware接口,改接口有一个方法,public void setApplica ...

  2. MS SQL按IN()内容排序

    需求:MMSQL查询结果,按查询条件中关键字IN内的列举信息的顺序一一对应排序. 分析:使用CHARINDEX 函数. 解决方法: SELECT * FROM Product WHERE 1=1 AN ...

  3. Sencha ExtJS 6 Widget Grid 入门

    最近由于业务需要,研究了一下Sencha ExtJS 6 ,虽然UI和性能上据相关资料说都有提升,但是用起来确实不太顺手,而且用Sencha cmd工具进行测试和发布,很多内部细节都是隐藏的,出了问题 ...

  4. 全球首个实战类微信小程序开发教程

    小木学堂专注于企业实战开发和经验传授,所以微信小程序诞生这么大的事怎么能不带着大家一起学习学习呢,所以小木学堂讲师连夜赶工学习并实战开发了微信小应用的第一个程序,并录制了课程现免费分享给大家.这个速度 ...

  5. html5上传图片(二)一解决部分手机拍照上传图片转向问题

    本以为解决跨域上传后没有问题了,不成想被测试找出一个问题,那就是在手机上拍照上传后图片会旋转.很头痛,不过没有办法,问题还是需要解决的.在查阅了一系列资料后我找到了相应的解决方案,利用exif.js获 ...

  6. Autodesk 为其云技术发布新品牌- Autodesk Forge

    近些年来Autodesk陆续发布了不少云解决方案和服务,比如BIM 360, Infraworks 360,Autodesk 360/A360, AutoCAD 360等等,这些众多叫做360的产品或 ...

  7. A星寻路算法介绍

    你是否在做一款游戏的时候想创造一些怪兽或者游戏主角,让它们移动到特定的位置,避开墙壁和障碍物呢? 如果是的话,请看这篇教程,我们会展示如何使用A星寻路算法来实现它! 在网上已经有很多篇关于A星寻路算法 ...

  8. T-SQL 如何获取一个表的列名

    方法1: exec sp_columns [{table_name}],[{schema_name}] 方法2: SELECT * FROM syscolumns WHERE id=OBJECT_ID ...

  9. shell两数之间的算术运算

    #!/bin/bash read -p "请输入第一个数:" a read -p "请输入第二个数:" b echo "$a+$b=$[$a+$b]& ...

  10. 项目自动化建构工具gradle 入门0——环境 & 废话

    gradle 是一个项目自动化构建工具.同类的产品还有ant ,maven等等.相比之下我更喜欢gradle,它语法简洁.兼容maven.ide集成很好. 学习使用gradle最快的方式是看文档,而且 ...