Ikki's Story I - Road Reconstruction
Time Limit: 2000MS   Memory Limit: 131072K
Total Submissions: 7659   Accepted: 2215

Description

Ikki is the king of a small country – Phoenix, Phoenix is so small that there is only one city that is responsible for the production of daily goods, and uses the road network to transport the goods to the capital. Ikki finds that the biggest problem in the country is that transportation speed is too slow.

Since Ikki was an ACM/ICPC contestant before, he realized that this, indeed, is a maximum flow problem. He coded a maximum flow program and found the answer. Not satisfied with the current status of the transportation speed, he wants to increase the transportation ability of the nation. The method is relatively simple, Ikki will reconstruct some roads in this transportation network, to make those roads afford higher capacity in transportation. But unfortunately, the country of Phoenix is not so rich in GDP that there is only enough money to rebuild one road. Ikki wants to find such roads that if reconstructed, the total capacity of transportation will increase.

He thought this problem for a loooong time but cannot get it. So he gave this problem to frkstyc, who put it in this POJ Monthly contest for you to solve. Can you solve it for Ikki?

Input

The input contains exactly one test case.

The first line of the test case contains two integers NM (N ≤ 500, M ≤ 5,000) which represents the number of cities and roads in the country, Phoenix, respectively.

M lines follow, each line contains three integers abc, which means that there is a road from city a to city b with a transportation capacity of c (0 ≤ ab < nc ≤ 100). All the roads are directed.

Cities are numbered from 0 to n − 1, the city which can product goods is numbered 0, and the capital is numbered n − 1.

Output

You should output one line consisting of only one integer K, denoting that there are K roads, reconstructing each of which will increase the network transportation capacity.

Sample Input

2 1
0 1 1

Sample Output

1

Source

[Submit]   [Go Back]   [Status]   [Discuss]

最小割的必须边。

 #include <cstdio>
#include <cstring> #define fread_siz 1024 inline int get_c(void)
{
static char buf[fread_siz];
static char *head = buf + fread_siz;
static char *tail = buf + fread_siz; if (head == tail)
fread(head = buf, , fread_siz, stdin); return *head++;
} inline int get_i(void)
{
register int ret = ;
register int neg = false;
register int bit = get_c(); for (; bit < ; bit = get_c())
if (bit == '-')neg ^= true; for (; bit > ; bit = get_c())
ret = ret * + bit - ; return neg ? -ret : ret;
} inline int min(int a, int b)
{
return a < b ? a : b;
} const int inf = 2e9;
const int maxn = ; int n, m;
int s, t;
int edges;
int hd[maxn];
int to[maxn];
int fl[maxn];
int nt[maxn]; inline void add(int u, int v, int f)
{
nt[edges] = hd[u]; to[edges] = v; fl[edges] = f; hd[u] = edges++;
nt[edges] = hd[v]; to[edges] = u; fl[edges] = ; hd[v] = edges++;
} int dep[maxn]; inline bool bfs(void)
{
static int que[maxn];
static int head, tail; memset(dep, , sizeof(dep));
head = , tail = ;
que[tail++] = s;
dep[s] = ; while (head != tail)
{
int u = que[head++], v;
for (int i = hd[u]; ~i; i = nt[i])
if (!dep[v = to[i]] && fl[i])
dep[v] = dep[u] + , que[tail++] = v;
} return dep[t];
} int dfs(int u, int f)
{
if (u == t || !f)
return f; int used = , flow; for (int i = hd[u], v; ~i; i = nt[i])
if (dep[v = to[i]] == dep[u] + && fl[i])
{
flow = dfs(v, min(f - used, fl[i])); used += flow;
fl[i] -= flow;
fl[i^] += flow; if (used == f)
return f;
} if (!used)
dep[u] = ; return used;
} inline bool dfs(void)
{
return dfs(s, inf) != ;
} inline void maxFlow(void)
{
while (bfs())
while (dfs());
} int dfn[maxn];
int scc[maxn]; void tarjan(int u)
{
static int low[maxn];
static int stk[maxn];
static int top, cnt, tim; stk[++top] = u;
dfn[u] = low[u] = ++tim; for (int i = hd[u]; ~i; i = nt[i])if (fl[i])
{
if (!dfn[to[i]])
tarjan(to[i]), low[u] = min(low[u], low[to[i]]);
else if (!scc[to[i]])
low[u] = min(low[u], dfn[to[i]]);
} if (low[u] == dfn[u])
{
++cnt; int t;
do
scc[t = stk[top--]] = cnt;
while (t != u);
}
} inline void tarjan(void)
{
for (int i = ; i < n; ++i)
if (!dfn[i])tarjan(i);
} inline void solve(void)
{
int ans = ; for (int i = ; i < edges; i += )if (!fl[i])
{
int u = to[i^], v = to[i];
if (scc[u] == scc[s])
if (scc[v] == scc[t])
++ans;
} printf("%d\n", ans);
} signed main(void)
{
n = get_i();
m = get_i(); memset(hd, -, sizeof(hd)); for (int i = ; i <= m; ++i)
{
int u = get_i();
int v = get_i();
int f = get_i(); add(u, v, f);
} s = , t = n - ; maxFlow(); tarjan(); solve();
}

@Author: YouSiki

POJ 3204 Ikki's Story I - Road Reconstruction的更多相关文章

  1. POJ3204 Ikki's Story I - Road Reconstruction

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  2. POJ 3204 Ikki's Story I-Road Reconstruction (网络流关键边)

    [题意]给定一个N个节点M条边的网络流,求有多少条边,使得当增其中加任何一个边的容量后,整个网络的流将增加. 挺好的一道题,考察对网络流和增广路的理解. [思路] 首先关键边一定是满流边.那么对于一个 ...

  3. POJ3184 Ikki's Story I - Road Reconstruction(最大流)

    求一次最大流后,分别对所有满流的边的容量+1,然后看是否存在增广路. #include<cstdio> #include<cstring> #include<queue& ...

  4. poj 3204(最小割--关键割边)

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  5. POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题)

    POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题) Description liympanda, one of Ikki's friend, likes ...

  6. POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat)

    POJ 3207 Ikki's Story IV - Panda's Trick id=3207" target="_blank" style=""& ...

  7. POJ3204 Ikki's Story - Road Reconstruction 网络流图的关键割边

    题目大意:一个有源有汇的城市,问最少增加城市中的多少道路可以增加源到汇上各个路径上可容纳的总车流量增加. 网络流关键割边集合指如果该边的容量增加,整个网络流图中的任意从原点到汇点的路径的流量便可增加. ...

  8. POJ 3207 Ikki's Story IV - Panda's Trick

    Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 7296   ...

  9. poj 3207 Ikki's Story IV - Panda's Trick (2-SAT)

    http://poj.org/problem?id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 13 ...

随机推荐

  1. 如何解决例如i++的线程不安全性

    AtomicBoolean.AtomicInteger.AtomicLong.AtomicReference 各种原子性关键字,可以解决比如i++的线程不安全性的因素

  2. 单台机器配置redis多实例

    1.增加/usr/local/redis/etc中拷贝一份配置文件重新命名为redis6483.conf 2.编辑redis6483.conf daemonize yes  //以后台进程启动 pid ...

  3. CSS3 @font-face的使用

    首先我们一起来看看@font-face的语法规则: @font-face { font-family: <YourWebFontName>; src: <source> [&l ...

  4. AlloyTouch与three.js 3D模型交互

    如你所见,上面的cube的旋转.加速.减速停止都是通过AlloyTouch去实现的. 演示 代码 <script src="asset/three.js"></s ...

  5. sed的应用

    h3 { color: rgb(255, 255, 255); background-color: rgb(30,144,255); padding: 3px; margin: 10px 0px } ...

  6. IOS 开发小技巧总结

    一.添加自定义字体 1.把字体文件拖到工程中. 2.plist 文件中添加字段:<Array>Fonts provided by application</Array> 把字体 ...

  7. ipad和iphone的适配

    关于xib或者storybord下iphone的横竖屏的适配以及ipad的适配 ios8出现了Size Classes,解决了各种屏幕适配的问题,他把屏幕的宽和高分别分成了三种,把屏幕总共分成了九种情 ...

  8. dSYM 文件分析工具

    来到新公司后,前段时间就一直在忙,前不久 项目 终于成功发布上线了,最近就在给项目做优化,并排除一些线上软件的 bug,因为项目中使用了友盟统计,所以在友盟给出的错误信息统计中能比较方便的找出客户端异 ...

  9. installshield使用教程

    从Visual Studio 2012开始,微软就把自家原来的安装与部署工具彻底废掉了,转而让大家去安装使用第三方的打包工具“InstallShield Limited Edition for Vis ...

  10. Oracle 哈希连接原理

    <基于Oracle的sql优化>里关于哈希连接的原理介绍如下: 哈希连接(HASH JOIN)是一种两个表在做表连接时主要依靠哈希运算来得到连接结果集的表连接方法. 在Oracle 7.3 ...