分布式监控系统开发【day38】:监控数据如何画图(九)
一、画图代码
1、收集处理数据
class GraphGenerator(object):
'''
generate graphs
''' def __init__(self,request,redis_obj):
self.request = request
self.host_id = self.request.GET.get('host_id')
self.service_name = self.request.GET.get('service_key')
self.index_key = self.request.GET.get('index_key')
self.time_range = self.request.GET.get('time_range')
self.sub_service_name = self.request.GET.get('sub_service_key')
self.redis = redis_obj print("sub service key:", self.sub_service_name) def get_graph_data(self):
#data_store_key = "StatusData_%s_%s_latest" %(self.host_id,self.service_name)
data_store_key = "StatusData_%s_%s_%s" %(self.host_id,self.service_name,self.time_range)
data_set = self.redis.lrange(data_store_key,0,-1)
print("data store key:", data_store_key)
print("data point nums:", len(data_set))
#print("data points:", data_set)
service_obj = models.Service.objects.get(name=self.service_name)
data_dic = {} #store graph data later
for item in service_obj.items.select_related():
data_dic[item.key] = [] if data_set: #make sure data set not empty print("service data for graph:", data_dic)
if self.sub_service_name == None or self.sub_service_name == 'undefined':
for data_point in data_set:
#data_point sample data:('-->', {u'status': 0, u'iowait': u'0.00', u'system': u'1.01', u'idle': u'96.98', u'user': u'2.01', u'steal': u'0.00', u'nice': u'0.00'}, 1461840915.038072)
val,timestamp = json.loads(data_point)
if val:
for k,v in val.items():
if k in data_dic:
'''if len(data_dic[k]) > 0: #不是第一次存值
last_point_save_time = data_dic[k][-1][0] #microseconds
data_point_interval =settings.STATUS_DATA_OPTIMIZATION[self.time_range][0]
if timestamp*1000 - last_point_save_time > data_point_interval:
#这里出现中断了
data_dic[k].append([last_point_save_time + data_point_interval,0])
else:#没有中断过,什么都 不用做哈哈
pass
'''
if type(v) is not list:
data_dic[k].append([timestamp*1000,float(v)])
else: #v = [avg,max,min,mid]
data_dic[k].append([timestamp*1000,float(v[0])]) #暂时只往前台 返回 average数据
else: #has sub service
print("\033[44;1m------------subservice key: %s, %s\033[0m" %(self.sub_service_name,self.service_name))
for data_point in data_set:
#data_point sample data:('-->', {u'status': 0, u'iowait': u'0.00', u'system': u'1.01', u'idle': u'96.98', u'user': u'2.01', u'steal': u'0.00', u'nice': u'0.00'}, 1461840915.038072)
val,timestamp = json.loads(data_point)
if val:
if val.get('data'):
for sub_service_key,v_dic in val['data'].items():
for k,v in v_dic.items():
if k in data_dic:
if type(v) is not list:
data_dic[k].append([timestamp*1000,float(v)])
else: #v = [avg,max,min,mid]
data_dic[k].append([timestamp*1000,float(v[0])]) #暂时只往前台 返回 average数据 for k,v in data_dic.items():
print(k,v) return data_dic
2、生成流量图
from monitor import models
import json
from CrazyMonitor import settings class GraphGenerator2(object):
'''
产生流量图
'''
def __init__(self,request,redis_obj):
self.request = request
self.redis = redis_obj
self.host_id = self.request.GET.get('host_id')
self.time_range = self.request.GET.get('time_range') def get_host_graph(self):
'''
生成此主机关联的所有图
:return:
'''
host_obj = models.Host.objects.get(id=self.host_id)
service_data_dic = {}
template_list = list(host_obj.templates.select_related())
for g in host_obj.host_groups.select_related():
template_list.extend(list(g.templates.select_related()))
template_list = set(template_list)
for template in template_list:
for service in template.services.select_related():
service_data_dic[service.id] = {
'name':service.name,
'index_data':{},
'has_sub_service': service.has_sub_service,
'raw_data':[],
'items': [item.key for item in service.items.select_related() ]
}
'''if not service.has_sub_service:
for index in service.items.select_related():
service_data_dic[service.id]['index_data'][index.key] = {
'id': index.id,
'name':index.name,
'data':[]
}
#else: #like nic service
''' print(service_data_dic)
#service_data_dic
#开始取数据
for service_id,val_dic in service_data_dic.items():
#if val_dic['has_sub_service'] == False:
service_redis_key = "StatusData_%s_%s_%s" %(self.host_id,val_dic['name'],self.time_range)
print('service_redis_key',service_redis_key)
service_raw_data = self.redis.lrange(service_redis_key,0,-1)
service_raw_data = [item.decode() for item in service_raw_data]
service_data_dic[service_id]['raw_data'] = service_raw_data return service_data_dic
3、画图展示
二、国外画图软件hcharts
1、官方网址
www.hcharts.cn
2、静态图讲解
3、动态图片讲解
动态看红框
4、API使用
1、数据格式
2、api文档
https://api.hcharts.cn/6/highcharts/index.html
截图
3、文档教程
https://www.hcharts.cn/docs
截图
三、国内百度echarts
1、官方网址
http://echarts.baidu.com/index.html
2、地图展示
3、3D图展示
4、文档
1、地址
http://echarts.baidu.com/tutorial.html#5%20%E5%88%86%E9%92%9F%E4%B8%8A%E6%89%8B%20ECharts
2、截图
分布式监控系统开发【day38】:监控数据如何画图(九)的更多相关文章
- Python之路,Day20 - 分布式监控系统开发
Python之路,Day20 - 分布式监控系统开发 本节内容 为什么要做监控? 常用监控系统设计讨论 监控系统架构设计 监控表结构设计 为什么要做监控? –熟悉IT监控系统的设计原理 –开发一个 ...
- day26 分布式监控系统开发
本节内容 为什么要做监控? 常用监控系统设计讨论 监控系统架构设计 监控表结构设计 为什么要做监控? –熟悉IT监控系统的设计原理 –开发一个简版的类Zabbix监控系统 –掌握自动化开发项目的程序设 ...
- 分布式监控系统开发【day37】:需求讨论(一)
本节内容 为什么要做监控? 常用监控系统设计讨论 监控需求讨论 如何实现监控服务器的水平扩展? 监控系统架构设计 一.为什么要做监控? 熟悉IT监控系统的设计原理 开发一个简版的类Zabbix监控系统 ...
- Python之分布式监控系统开发
为什么要做监控? –熟悉IT监控系统的设计原理 –开发一个简版的类Zabbix监控系统 –掌握自动化开发项目的程序设计思路及架构解藕原则 常用监控系统设计讨论 Zabbix Nagios 监控系统需求 ...
- 基于类和redis的监控系统开发
最近学习python运维开发,编写得一个简单的监控系统,现记录如下,仅供学习参考. 整个程序分为7个部分: 第一个部分根据监控架构设计文档架构如下: .├── m_client│ ├── conf ...
- 分布式监控系统Zabbix3.2监控数据库的连接数
在 分布式监控系统Zabbix3.2跳坑指南 和 分布式监控系统Zabbix3.2给异常添加邮件报警 已经介绍了如何安装以及报警.此篇通过介绍监控数据库的3306端口连接数来了解如何监控其它端口和配置 ...
- 基于SkyWalking的分布式跟踪系统 - 微服务监控
上一篇文章我们搭建了基于SkyWalking分布式跟踪环境,今天聊聊使用SkyWalking监控我们的微服务(DUBBO) 服务案例 假设你有个订单微服务,包含以下组件 MySQL数据库分表分库(2台 ...
- 移动物体监控系统-sprint3移动监控主系统设计与开发
一.移动监控的原理 通过获取摄像头图像,比较前后每一帧的图像数据,从而实现移动物体监控.所有移动监控原理都是这样,只是图像帧的对比的算法不一样. 二.移动物体监控系统的实现 选择开源的移动监控软件mo ...
- 阶段2-新手上路\项目-移动物体监控系统\Sprint3-移动监控主系统设计与开发
移动图像监控系统 去找一些相关开源程序进行移植:百度搜索-linux 移动监控 motion是一套免费开源的移动图像监测程序 前面我们已经使用了很多开源软件,他们的使用方法都是大同小异的 1).先在当 ...
- Linux记录-监控系统开发
需求:使用shell定制各种个性化告警工具,但需要统一化管理.规范化管理.思路:指定一个脚本包,包含主程序.子程序.配置文件.邮件引擎.输出日志等.主程序:作为整个脚本的入口,是整个系统的命脉.配置文 ...
随机推荐
- 爬虫系列---scrapy post请求、框架组件和下载中间件+boss直聘爬取
一 Post 请求 在爬虫文件中重写父类的start_requests(self)方法 父类方法源码(Request): def start_requests(self): for url in se ...
- Eclipse安装Gradle插件
1.window下安装Gradle见https://www.cnblogs.com/felixzh/p/9203271.html2.eclipse中依次打开help>Install new so ...
- Koa 框架介绍
Node.js 是一个异步的世界,官方 API 支持的都是 callback 形式的异步编程模型,这 会带来许多问题,例如:callback 嵌套问题 ,异步函数中可能同步调用 callback 返回 ...
- ✔ OI Diary ★
一 | 2019-3-28 1.整晨,云之考矣,暴后皆不会,邃无感而写斯普雷尔,然则午后知暴可六十哉. 然则斯普雷毙,虽特判之矣,然则暴只判二十哉,呜呼! 2.午间归宿,视白购书一本,目触,感之甚集 ...
- SQL语句检索数据排序及过滤
阅读目录 一:排序检索数据 二:过滤数据 三:高级数据过滤 四:用通配符进行过滤 回到顶部 一:排序检索数据 1.1 排序数据 比如查询数据库中表数据的时候,我们使用如下语句: select * fr ...
- odoo中各视图写法
透视图: 还需要将一个pivot表添加到要待办任务(To-Do Tasks)中,请使用以下代码: <record id="view_pivot_todo_task" mode ...
- ZJOI2019做题笔记
麻将(期望.DP套DP) 先考虑如何计算一个子集是否能胡. 设\(f_{i,0/1,j,k}\)表示考虑了子集中\(1 \sim i\)的牌,是否找到对子,\(i-1,i,i+1\)预计拿\(j\)个 ...
- python list 中 remove 的骚操作/易错点
在过去的某一天(2019.3.19),有个学弟问了一个关于python list中的一个问题: 比如我们已知一个列表 [3,4,5,6,5,4,3] 我们想删除第一个为3的元素. 我们尝试了如下几种方 ...
- CentOS7.5脱机安装SQL Server 2017(NEW)
发现搜到的都是在线下载安装的,都是只安装了mssql-server服务,没有mssql-server-agent服务.还以为linux下mssql没有agent服务呢.一番测试发现可以脱机安装,但是能 ...
- Babel插件开发入门指南
文章概览 主要包括:Babel如何进行转码.插件编写的入门基础.实例讲解如何编写插件. 阅读本文前,需要读者对Babel插件如何使用.配置有一定了解,可以参考笔者之前的文章. 本文所有例子可以在 笔者 ...