应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010年复变函数复试试题]
应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010年复变函数复试试题]
解答: $$\beex \bea I(x)&=\int_{-1}^1 \frac{\rd t}{\sqrt{1-t^2}(t-x)}\\ &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\rd \tt}{\sin\tt-x}\quad(t=\sin\tt)\\ &=\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{\rd \tau}{\sin\tau-x}\quad(\pi-\tt=\tau)\\ &=\frac{1}{2}\sez{\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} +\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}\frac{\rd \tt}{\sin\tt-x}}\\ &=\frac{1}{2}\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{\rd \tt}{\sin\tt-x}\\ &=\frac{1}{2}\int_{|z|=1}\frac{1}{\frac{z-z^{-1}}{2i}-x}\cdot \frac{\rd z}{iz}\\ &=\int_{|z|=1}\frac{\rd z}{z^2-2ixz-1}\\ &=\sedd{\ba{ll} 2\pi i\cdot \underset{z=i(x+\sqrt{x^2-1})}{\Res}\cfrac{1}{z^2-2ixz-1},&x<-1\\ 2\pi i\cdot \underset{z=i(x-\sqrt{x^2-1})}{\Res}\cfrac{1}{z^2-2ixz-1},&x>1 \ea}\\ &=\sedd{\ba{ll} \cfrac{\pi}{\sqrt{x^2-1}},&x<-1\\ -\cfrac{\pi}{\sqrt{x^2-1}},&x>1 \ea}\\ &=-\frac{\pi}{x\sqrt{1-\frac{1}{x^2}}}. \eea \eeex$$
应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010年复变函数复试试题]的更多相关文章
- 求复变函数的 Taylor 展式与 Laurent 展式[华中师范大学2010年复变函数复试试题]
设 $$\bex f(z)=\frac{1}{(z-1)(z-2)}. \eex$$ (1) 求 $f(z)$ 在 $|z|<1$ 内的 Taylor 展式. (2) 求 $f(z)$ 在圆环 ...
- 「学习记录」《数值分析》第二章计算实习题(Python语言)
在假期利用Python完成了<数值分析>第二章的计算实习题,主要实现了牛顿插值法和三次样条插值,给出了自己的实现与调用Python包的实现--现在能搜到的基本上都是MATLAB版,或者是各 ...
- poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】
题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...
- 「学习记录」《数值分析》第三章计算实习题(Python语言)
第三题暂缺,之后补充. import matplotlib.pyplot as plt import numpy as np import scipy.optimize as so import sy ...
- 家里蹲大学数学杂志 Charleton University Mathematics Journal 官方目录[共七卷493期,6055页]
家里蹲大学数学杂志[官方网站]从由赣南师范大学张祖锦老师于2010年创刊;每年一卷, 自己有空则出版, 没空则搁置, 所以一卷有多期.本杂志至2016年12月31日共7卷493期, 6055页.既然做 ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- BERT解析及文本分类应用
目录 前言 BERT模型概览 Seq2Seq Attention Transformer encoder部分 Decoder部分 BERT Embedding 预训练 文本分类试验 参考文献 前言 在 ...
- 中国石油大学(华东)数学实验(MATLAB)复习
作者:张世琛 函数的导数 $$ 求函数y=log(x+\sqrt{1+x^2})的一阶和二阶导数 $$ syms x; y=log(x+sqrt(1+x^2)); dydx=diff(y,x); dy ...
- [hdu6987]Cycle Binary
定义$x$为$s$的周期,当且仅当$\forall 1\le i\le |s|-x,s_{i}=s_{i+x}$(字符串下标从1开始) 令$per(s)$为$s$的正周期构成的集合,$\min p ...
随机推荐
- python 文件名的操作
1.文件操作 open()文件句柄:获取文件的路径信息 open() 打开一个文件,获取文件句柄 read() 全部读出出文件中的内容 readline() 读取文件中逐一读取一行数据 readlin ...
- .net 调用java service 代理类方法
通过Svcutil.exe 工具生成代理类调用 1.找到如下地址“C:\Windows\System32\cmd.exe” 命令行工具,右键以管理员身份运行(视系统是否为win7 而定) 2 ...
- Spring Security(三十六):12. Spring MVC Test Integration
Spring Security provides comprehensive integration with Spring MVC Test Spring Security提供与Spring MVC ...
- Linux+Shell常用命令总结
因为自己不经常使用linux的命令行工具,但是mac的终端还是经常使用的,有些命令总是要想一会或者百度一下才知道怎么用,抽时间整理了一下常用的命令,作为笔记. 常用命令 查看文件操作: ls :列出当 ...
- Elasticsearch 通关教程(二): 索引映射Mapping问题
数据库建表的时候,我们的DDL语句一般都会指定每个字段的存储类型,例如:varchar,int,datetime等等,目的很明确,就是更精确的存储数据,防止数据类型格式混乱. CREATE TABLE ...
- 几行c#代码,轻松搞定一个女大学生
几行c#代码,轻松搞定一个女大学生 的作业... 哈哈,标题党了哈,但是是真的,在外面敲代码,想赚点外快,接到了一个学生的期末考试,是一个天气预报的程序.程序并不难. 看到这个需求第一个想法就是只要找 ...
- 《React Native 精解与实战》书籍连载「React Native 源码学习方法及其他资源」
此系列文章将整合我的 React 视频教程与 React Native 书籍中的精华部分,给大家介绍 React Native 源码学习方法及其他资源. 最后的章节给大家介绍 React Native ...
- 如何将多个C文件链接在一起----Makefile编写及make指令
需使用GCC编译器,关于MinGW的安装指南:https://people.eng.unimelb.edu.au/ammoffat/teaching/20005/Install-MinGW.pdf 单 ...
- mybatis 使用注解简化xml映射文件
目录 关于mybatis注解 初次简单使用mybatis注解示例 利用注解实现指定映射 使用注解实现表间关联(1对1) 关于mybatis注解 注解在java中特别常见,mybatis中也支持注解. ...
- 采用VSPD、ModbusTool模拟串口、MODBUS TCP设备进行Python采集软件开发
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 不少仪器/设备都提供了数据采集的接口,其中不少是串口或网络的MODBUS/TCP协议. 串口是比较简单 ...