1.Boosting方法思路

Boosting方法通过将一系列的基本分类器组合,生成更好的强学习器

基本分类器是通过迭代生成的,每一轮的迭代,会使误分类点的权重增大

Boosting方法常用的算法是AdaBoost(Adaptive Boosting)、GBRT (Gradient Tree Boosting)

2.AdaBoost算法

算法要解决的2个问题(分类)

  • 如何改变训练集的权值

  提高前一轮分类错误样本的权值,降低分类正确样本的权值

  • 如何将基本分类器组合成强学习器

  加权多数表决法,通过投票来决定最后的结果,分类误差率小的基本分类器在投票中起较大作用,分类误差率大的基本分类器在投票中起较小作用。

算法思想

输入:训练集D;弱学习算法;训练轮数T

1)初始化权值分布D1(x) = 1/n

2)(for i=1;i<T;i++){

  a.计算不同基本分类器G的分类误差率e,找到最小分类误差率ei

 

  b.根据最小分类误差率ei,选择最小的基本分类器Gi

  c.计算Gi的权值αi;

  

  d.更新权值分布为Di+1(x);

 

  e.计算最终分类器G(x),并用G(x)分类,没有误分类点退出循环

}

例子

例子来源于李航《统计学习方法》P140,数据表如下

x 0 1 2 3 4 5 6 7 8 9
y 1 1 1 -1 -1 -1 1 1 1 -1

首先是算法的输入,训练集D就是上边的表格,弱学习算法采用决策树桩(选一个数v,比v大的分一类,比v小的分一类),训练轮数输入5

1)初始化权值分布$D_1(x) =({1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10},{1 \over 10})$

2)第一轮,i=1

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

当v取0.5时,x=1,2,6,7,8,9分错类,故e = ${0.1*1+0.1*1+0.1*1+0.1*1+0.1*1} = 0.5$

同理可求v取1.5,2.5,…,8.5时的分类误差率,不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.5 0.4 0.3 0.4 0.5 0.6 0.5 0.4 0.3

当v=2.5时,x=6,7,8分错类,分类误差率最低为e1 = ${0.1*1+0.1*1+0.1*1} = 0.3$

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.5 0.6 0.7 0.6 0.5 0.4 0.5 0.6 0.7

b.因此可以得到基本分类器

$$G_1(x) = \begin{cases}1,&x<2.5\\-1,&x>2.5\end{cases}$$

c.计算G1(x)的权值α1

$$α_1 = {1 \over 2} ln {1- e_1 \over e_1} = 0.4236$$

d.更新权值分布为D2(x)
$$Z_1=0.1*e^{-0.4236*1*1}+0.1*e^{-0.4236*1*1}+...+0.1*e^{-0.4236*-1*-1}=0.7e^{-0.4236}+0.3e^{0.4236}$$

$$w_{21}={0.1e^{-0.4236} \over 0.7e^{-0.4236}+0.3e^{0.4236}} = 0.07143$$

同理可以计算其他w2j,最后得到更新后的权值分布D2,这个D2留着在下一轮用

$$D_2=(0.07143,0.07143,0.07143,0.07143,0.07143,0.07143,0.16667,0.16667,0.16667,0.07143)$$

e.计算第一轮最终分类器G(x)

$$G(x) =0.4236G_1(x) $$

用sign[G(x)]分类有x=6,7,8三个误分类点

第二轮,i=2

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.643 0.571 0.5 0.571 0.643 0.714 0.548 0.381 0.214

当v=8.5时,x=4,5,6分错类,分类误差率最低为e2 = ${0.07143*1+0.07143*1+0.07143*1} =0.2143$

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.357 0.429 0.5 0.429 0.357 0.286 0.452 0.619 0.786

b.因此可以得到基本分类器

$$G_2(x) = \begin{cases}1,&x<8.5\\-1,&x>8.5\end{cases}$$

c.计算G2(x)的权值α2

$$α_2 = {1 \over 2} ln {1- e_2 \over e_2} = 0.6496$$

d.更新权值分布为D3(x)

$$D_3=(0.0455,0.0455,0.0455,0.1667,0.1667,0.1667,0.1060,0.1060,0.1060,0.0455)$$

e.计算第二轮最终分类器G(x)

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)$$

用sign[G(x)]分类有x=3,4,5三个误分类点

第三轮,i=3

a.由于弱学习算法是决策树桩,v可取的值为0.5,1.5,2.5,…,8.5

case1:当x<v时,y=1;x>v时,y=-1;

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.409 0.364 0.318 0.485 0.652 0.818 0.712 0.606 0.5

case2:当x<v时,y=-1;x>v时,y=1;不同v求得的分类误差率如下

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5
0.591 0.636 0.682 0.515 0.348 0.182 0.288 0.394 0.5

当v=5.5时,x=0,1,2,9分错类,分类误差率最低为e3 = ${0.0455*1+0.0455*1+0.0455*+0.0455*1} =0.182$

b.因此可以得到基本分类器

$$G_3(x) = \begin{cases}-1,&x<5.5\\1,&x>5.5\end{cases}$$

c.计算G3(x)的权值α3

$$α_3 = {1 \over 2} ln {1- e_3 \over e_3} = 0.7514$$

d.更新权值分布为D4(x)

$$D_4=(0.125,0.125,0.125,0.102,0.102,0.102,0.065,0.065,0.065,0.125)$$

e.计算第三轮最终分类器G(x)

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)+0.7514G_3(x)$$

用sign[G(x)]分类有0个误分类点,故最终的分类器是

$$G(x) =0.4236G_1(x) + 0.6496G_2(x)+0.7514G_3(x)$$

集成方法 Boosting原理的更多相关文章

  1. 集成方法 Bagging原理

    1.Bagging方法思路 Bagging独立的.并行的生成多个基本分类器,然后通过投票方式决定分类的类别 Bagging使用了自助法确定每个基本分类器的训练数据集,初始样本集中63.2%的数据会被采 ...

  2. 集成学习之Boosting —— Gradient Boosting原理

    集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...

  3. 常用的模型集成方法介绍:bagging、boosting 、stacking

    本文介绍了集成学习的各种概念,并给出了一些必要的关键信息,以便读者能很好地理解和使用相关方法,并且能够在有需要的时候设计出合适的解决方案. 本文将讨论一些众所周知的概念,如自助法.自助聚合(baggi ...

  4. 【机器学习实战】第7章 集成方法 ensemble method

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  5. 【机器学习实战】第7章 集成方法(随机森林和 AdaBoost)

    第7章 集成方法 ensemble method 集成方法: ensemble method(元算法: meta algorithm) 概述 概念:是对其他算法进行组合的一种形式. 通俗来说: 当做重 ...

  6. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGBT)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  7. 决策树和基于决策树的集成方法(DT,RF,GBDT,XGB)复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-the ...

  8. 集成学习方法Boosting和Bagging

    集成学习是通过构架并结合多个学习器来处理学习任务的一种思想, 目前主要分为两大类:Boosting和Bagging. 对于任意一种集成方法, 我们都希望学习出来的基分类器具有较高的准确性和多样性, 基 ...

  9. SpringBoot集成MyBatis底层原理及简易实现

    MyBatis是可以说是目前最主流的Spring持久层框架了,本文主要探讨SpringBoot集成MyBatis的底层原理.完整代码可移步Github. 如何使用MyBatis 一般情况下,我们在Sp ...

随机推荐

  1. 基于 WebGL 3D 的 HTML5 档案馆可视化管理系统

    前言 档案管理系统是通过建立统一的标准以规范整个文件管理,包括规范各业务系统的文件管理的完整的档案资源信息共享服务平台,主要实现档案流水化采集功能.为企事业单位的档案现代化管理,提供完整的解决方案,档 ...

  2. react的jsx语法

    在webpack.config.js中配置解析的loader { test:/\.jsx?$/, use:{ loader:"babel-loader", options:{ pr ...

  3. SSH 协议的 ssh StrictHostKeyChecking

    项目的SFTP用到了这个参数: @Override public PooledObject<ChannelSftp> makeObject() throws Exception { JSc ...

  4. Javaweb项目 利用JSP响应浏览器

    一.javaweb  数据访问流程? 1.浏览器 http 访问服务器 找到 servlet(HttpServeltDemo.java文件) 2.servle 通过dao 访问数据库 数据库将数据返回 ...

  5. 使用js获取页面参数

    方法一 function GetUrlParam (name) { return decodeURIComponent((new RegExp('[?|&]' + name + '=' + ' ...

  6. Java【第九篇】异常处理

    异常概述 介绍 任何一种程序设计语言设计的程序在运行时都有可能出现错误,例如除数为0,数组下标越界,要读写的文件不存在等等.捕获错误最理想的是在编译期间,但有的错误只有在运行时才会发生.对于这些错误, ...

  7. Sequence II HDU - 5919(主席树)

    Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2,⋯,ana1,a2,⋯,anThere are ...

  8. NEED TO DO

    任务清单 计算几何  KDtree  容斥  后缀自动机套数据结构 FFT  四边形不等式/决策单调性优化  欧拉路 KM算法  BM算法  数论 min25筛  后缀数组 吉司机线段树 生成函数  ...

  9. 题解-洛谷P1601 A+B Problem(高精)

    https://www.luogu.org/problemnew/show/P1601(题目传送) 显然数据范围超过了long long类型,故不能简单的用两个长整型存起来相加.这里用到大数据的高精度 ...

  10. Oracle 查看链接数、创建索引等的DDL语句

    select count(*),machine from v$session group by machine 今天打算将一个数据库的索引在另一个测试库上重新创建一遍,研究了一下. set pages ...