P2495 [SDOI2011]消耗战
思路
虚树上DP
虚树相当于一颗包含了所有询问的关键点信息的树,包含的所有点只有询问点和它们的LCA,所以点数是\(2k\)级别的,这样的话复杂度就是\(O(\sum k)\),复杂度就对了
虚树重点就是虚树的构造
用栈可以进行虚树的构造
过程如下
设现在加入点u
如果栈为空或只有一个元素,直接加入即可(延长当前链)
如果LCA(u,S[top])=S[top],把u加入即可(延长树链)
否则证明u和S中的树链在lca的两个子树中,在dfn[lca]<=dfn[S[top-1]]的条件下,从S[top-1]向S[top]连边,然后弹出
如果最后lca=S[top],证明这颗子树构造完成,加入u即可
否则证明lca在S[top-1]和S[top]之间,从lca向S[top]连边,然后pop出S[top],lca入栈
最后把u加入即可
这题建出虚树之后就直接DP就好了
如果u不是关键点
\(DP[u]=\sum_{v\in son[u]} min(minx[v],DP[v])\)
如果u是关键点
\(DP[u]=minx[u]\)
minx[u]是断开1到u路径的最小代价
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <vector>
#define int long long
using namespace std;
const int MAXN = 250010;
int n,m;
struct Graph{
vector<int> to[MAXN],wx[MAXN];
void addedge(int ui,int vi,int wi){
to[ui].push_back(vi);
wx[ui].push_back(wi);
}
}G1,G2;
int S[MAXN],topx,dfn[MAXN],dfs_clock,fa[MAXN][20],dep[MAXN],minx[MAXN],mark[MAXN];
void dfs1(int u,int f){
dep[u]=dep[f]+1;
dfn[u]=++dfs_clock;
fa[u][0]=f;
for(int i=1;i<20;i++)
fa[u][i]=fa[fa[u][i-1]][i-1];
for(int i=0;i<G1.to[u].size();i++){
int vi=G1.to[u][i];
if(vi==f)
continue;
minx[vi]=min(G1.wx[u][i],minx[u]);
dfs1(vi,u);
}
}
int lca(int x,int y){
if(dep[x]<dep[y])
swap(x,y);
for(int i=19;i>=0;i--)
if(dep[fa[x][i]]>=dep[y])
x=fa[x][i];
if(x==y)
return x;
for(int i=19;i>=0;i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
bool cmp(int a,int b){
return dfn[a]<dfn[b];
}
void insert(int u){
if(topx<=1){
S[++topx]=u;
return;
}
int Lca=lca(u,S[topx]);
if(Lca==S[topx]){
S[++topx]=u;
return;
}
while(topx>1&&dfn[Lca]<=dfn[S[topx-1]]){
G2.addedge(S[topx-1],S[topx],0);
topx--;
}
if(Lca!=S[topx]){
G2.addedge(Lca,S[topx],0);
S[topx]=Lca;
}
S[++topx]=u;
}
int dfs2(int u){
int ans=0;
for(int i=0;i<G2.to[u].size();i++)
ans+=min(minx[G2.to[u][i]],dfs2(G2.to[u][i]));
G2.to[u].clear();
if(mark[u]){
mark[u]=false;
return minx[u];
}
else
return ans;
}
vector<int> im;
signed main(){
scanf("%lld",&n);
for(int i=1;i<n;i++){
int a,b,c;
scanf("%lld %lld %lld",&a,&b,&c);
G1.addedge(a,b,c);
G1.addedge(b,a,c);
}
minx[1]=0x3f3f3f3f;
dfs1(1,0);
scanf("%lld",&m);
for(int i=1;i<=m;i++){
im.clear();
int x,k;
scanf("%lld",&k);
for(int j=1;j<=k;j++){
scanf("%lld",&x);
im.push_back(x);
mark[x]=true;
}
sort(im.begin(),im.end(),cmp);
insert(1);
for(int i=0;i<im.size();i++)
insert(im[i]);
while(topx>0){
G2.addedge(S[topx-1],S[topx],0);
topx--;
}
printf("%lld\n",dfs2(1));
}
return 0;
}
P2495 [SDOI2011]消耗战的更多相关文章
- 洛谷P2495 [SDOI2011]消耗战(虚树dp)
P2495 [SDOI2011]消耗战 题目链接 题解: 虚树\(dp\)入门题吧.虚树的核心思想其实就是每次只保留关键点,因为关键点的dfs序的相对大小顺序和原来的树中结点dfs序的相对大小顺序都是 ...
- ●洛谷P2495 [SDOI2011]消耗战
题链: https://www.luogu.org/problemnew/show/P2495题解: 虚树入门,树形dp 推荐博客:http://blog.csdn.net/lych_cys/arti ...
- P2495 [SDOI2011]消耗战 lca倍增+虚树+树形dp
题目:给出n个点的树 q次询问 问切断 k个点(不和1号点联通)的最小代价是多少 思路:树形dp sum[i]表示切断i的子树中需要切断的点的最小代价是多少 mi[i]表示1--i中的最小边权 ...
- 洛谷P2495 [SDOI2011]消耗战(虚树)
题面 传送门 题解 为啥一直莫名其妙\(90\)分啊--重构了一下代码才\(A\)掉-- 先考虑直接\(dp\)怎么做 树形\(dp\)的时候,记一下断开某个节点的最小值,就是从根节点到它的路径上最短 ...
- [洛谷P2495][SDOI2011]消耗战
题目大意:有一棵$n(n\leqslant2.5\times10^5)$个节点的带边权的树,$m$个询问,每次询问给出$k(\sum\limits_{i=1}^mk_i\leqslant5\times ...
- 洛谷 P2495 [SDOI2011]消耗战(虚树,dp)
题面 洛谷 题解 虚树+dp 关于虚树 了解一下 具体实现 inline void insert(int x) { if (top == 1) {s[++top] = x; return ;} int ...
- P2495 [SDOI2011]消耗战 虚树
这是我做的第一道虚树题啊,赶脚不错.其实虚树也没什么奇怪的,就是每棵树给你一些点,让你多次查询,但是我不想每次都O(n),所以我们每次针对给的点建一棵虚树,只包含这些点和lca,然后在这棵虚树上进行树 ...
- luogu P2495 [SDOI2011]消耗战 |虚树+LCA+dp
题目描述 在一场战争中,战场由n个岛屿和n-1个桥梁组成,保证每两个岛屿间有且仅有一条路径可达.现在,我军已经侦查到敌军的总部在编号为1的岛屿,而且他们已经没有足够多的能源维系战斗,我军胜利在望.已知 ...
- Luogu P2495 [SDOI2011]消耗战
题目 我们可以很快的想到一个单次\(O(n)\)的dp. 然后我们注意到这个dp有很多无用的操作,比如一条没有关键点的链可以直接去掉. 所以我们可以尝试一次dp中只管那些有用的点. 题目给的关键点显然 ...
随机推荐
- vue项目打包之后js文件过大怎么办?
- npm run dev/build/serve
1.ERR引发的思考 npm run dev npm ERR! missing script: dev npm ERR! A complete log of this run can be found ...
- 学习记录----简单的原生js路由
在以前的web程序中,路由字眼只出现在后台中.但是随着SPA单页面程序的发展,便出现了前端路由一说.单页面顾名思义就是一个网站只有一个html页面,但是点击不同的导航显示不同的内容,对应的url也会发 ...
- [jquery.validate]自定义方法实现"手机号码或者固定电话"的逻辑验证
最近项目开发中遇到这样的需求“手机号码或者固话至少填写一个”,如下图所示: 项目采用的jquery.validate.js验证组件,目前组件不支持这种“或”逻辑的验证,于是就自己定义一个 jQuery ...
- Django---手动编写视图
手动编写视图 一. Request----->URL---->业务处理(Views)(Http Response) Response-------> 二. VOE Django ...
- ORA-00600: 内部错误代码, 参数: [kcm_headroom_warn_1], [], [], [], [], [], [], [], [], [], [], []
SQL*Plus: Release 11.2.0.4.0 Production on 星期三 1月 1 08:53:48 2003 Copyright (c) 1982, 2013, Oracle. ...
- python操作email
python操作email 参考链接: python官网imaplib: https://docs.python.org/2/library/imaplib.html Python 用IMAP接收邮件 ...
- java的智能提示无法打开
第一步:选中“window”->“preference” 第二步:选中“java”,并展开 第三步:选中“Editor”,并展开 第四步:选中“Content Assist”,在右侧 ...
- PHP 十万数字不同数组取最大的5个 (经典面试题topK) (原)
$arr = array(3,5,7,8,1,2,456,78,...101,2345,456); 类似上述数组,共有十万个元素,让我们取出TOP5,下面是我的解法,先上代码再讲解思路 functio ...
- Kafka笔记8(管理Kafka)
使用kafka-topic.sh工具可以执行大部分操作 创建/修改/删除/查看集群里的主题.要使用全部功能,需要通过--zookeeper参数提供zookeerper连接字符串 创建主题: 创建主 ...