PSO:利用PSO+ω参数实现对一元函数y = sin(10*pi*x) ./ x进行求解优化,找到最优个体适应度—Jason niu
x = 1:0.01:2;
y = sin(10*pi*x) ./ x;
figure
plot(x, y)
title('绘制目标函数曲线图—Jason niu');
hold on c1 = 1.49445;
c2 = 1.49445; maxgen = 50;
sizepop = 10; Vmax = 0.5;
Vmin = -0.5;
popmax = 2;
popmin = 1; ws = 0.9;
we = 0.4; for i = 1:sizepop pop(i,:) = (rands(1) + 1) / 2 + 1;
V(i,:) = 0.5 * rands(1); fitness(i) = fun(pop(i,:));
end [bestfitness bestindex] = max(fitness);
zbest = pop(bestindex,:);
gbest = pop;
fitnessgbest = fitness;
fitnesszbest = bestfitness; for i = 1:maxgen
w = ws - (ws-we)*(i/maxgen);
for j = 1:sizepop V(j,:) = w*V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));
V(j,find(V(j,:)>Vmax)) = Vmax;
V(j,find(V(j,:)<Vmin)) = Vmin; pop(j,:) = pop(j,:) + V(j,:);
pop(j,find(pop(j,:)>popmax)) = popmax;
pop(j,find(pop(j,:)<popmin)) = popmin; fitness(j) = fun(pop(j,:));
end for j = 1:sizepop
if fitness(j) > fitnessgbest(j)
gbest(j,:) = pop(j,:);
fitnessgbest(j) = fitness(j);
end if fitness(j) > fitnesszbest
zbest = pop(j,:);
fitnesszbest = fitness(j);
end
end
yy(i) = fitnesszbest;
end [fitnesszbest zbest]
plot(zbest, fitnesszbest,'r*') figure
plot(yy)
title('PSO:PSO算法(快于GA算法)+ω参数实现找到最优个体适应度—Jason niu','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);

PSO:利用PSO+ω参数实现对一元函数y = sin(10*pi*x) ./ x进行求解优化,找到最优个体适应度—Jason niu的更多相关文章
- PSO:利用PSO实现对一元函数y = sin(10*pi*x) ./ x进行求解优化,找到最优个体适应度—Jason niu
x = 1:0.01:2; y = sin(10*pi*x) ./ x; figure plot(x, y) title('绘制目标函数曲线图—Jason niu'); hold on c1 = 1. ...
- PSO:利用PSO算法优化二元函数,寻找最优个体适应度—Jason niu
figure [x,y] = meshgrid(-5:0.1:5,-5:0.1:5); z = x.^2 + y.^2 - 10*cos(2*pi*x) - 10*cos(2*pi*y) + 20; ...
- Dataset:利用Python将已有mnist数据集通过移动像素上下左右的方法来扩大数据集为初始数据集的5倍—Jason niu
from __future__ import print_function import cPickle import gzip import os.path import random import ...
- TF:利用TF的train.Saver将训练好的variables(W、b)保存到指定的index、meda文件—Jason niu
import tensorflow as tf import numpy as np W = tf.Variable([[2,1,8],[1,2,5]], dtype=tf.float32, name ...
- GA:利用GA对一元函数进行优化过程,求x∈(0,10)中y的最大值——Jason niu
x = 0:0.01:10; y = x + 10*sin(5*x)+7*cos(4*x); figure plot(x, y) xlabel('independent variable') ylab ...
- C利用可变参数列表统计一组数的平均值,利用函数形式参数栈原理实现指针运算
//描述:利用可变参数列表统计一组数的平均值 #include <stdarg.h> #include <stdio.h> float average(int num, ... ...
- 求任意长度数组的最大值(整数类型)。利用params参数实现任意长度的改变。
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 在C#应用程序中,利用表值参数过滤重复,批量向数据库导入数据,并且返回重复数据
在很多情况下,应用程序都需要实现excel数据导入功能,数据如果只有几十条,或上百条,甚至上千条,速度还好. 但是不仅如此,如果客户提供给你的excel本身存在着重复数据,或是excel中的某些数据已 ...
- 等效介质理论模型---利用S参数反演法提取超材料结构的等效参数
等效介质理论模型---利用S参数反演法提取超材料结构的等效参数 S参数反演法,即利用等效模型的传输矩阵和S参数求解超材料结构的等效折射率n和等效阻抗Z的过程.本文对等效介质理论模型进行了详细介绍,并提 ...
随机推荐
- codeforces 786E ALT
题目链接:CF786E 输出方案暗示网络流 我们考虑最朴素的建图 由源点\(s\)连向所有人,容量为1:树上所有的边视作节点连向\(t\),流量为1:人向其路径上所有的树边连边,流量为\(inf\), ...
- 【JVM】关于类加载器准备阶段的一道面试题目
一个经典的延伸问题 我们来看一个经典的延伸问题,准备阶段谈到静态变量,那么对于常量和不同静态变量有什么区别? 需要明确的是,没有人能够精确的理解和记忆所有信息,如果碰到这种问题,有直接答案当然最好:没 ...
- 在Ubuntu上使用离线方式快速安装K8S v1.11.1
在Ubuntu上使用离线方式快速安装K8S v1.11.1 0.安装包文件下载 https://pan.baidu.com/s/1nmC94Uh-lIl0slLFeA1-qw v1.11.1 文件大小 ...
- poj 2955 Brackets (区间dp 括号匹配)
Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...
- 我眼中的K-近邻算法
有一句话这样说:如果你想了解一个人,你可以从他身边的朋友开始. 如果与他交往的好友都是一些品行高尚的人,那么可以认为这个人的品行也差不了. 其实古人在这方面的名言警句,寓言故事有很多.例如:人以类聚, ...
- CMDB资产管理系统开发【day25】:Django 自定义用户认证
官方文档:https://docs.djangoproject.com/en/1.10/topics/auth/customizing/#substituting-a-custom-user-mode ...
- canvas绘图工具
关于canvas绘图,在html页面上太方便了.当然刚开始还是入了不少坑,用了比如jcanvascript等三方插件.真实效果反而不理想,后来就没用插件. 下面是实现效果,可以在线绘制工地图然后传给后 ...
- java集合分割
java集合分割成等份的小集合: private <T> List<List<T>> getSubList(List list,int len) { if(list ...
- [数学笔记Mathematical Notes]1-调和级数发散的一个简单证明
定理. 调和级数 $\dps{\vsm{n}\frac{1}{n}}$ 是发散的. 证明. 设 $$\bex a_n=\sum_{k=1}^n\frac{1}{k}, \eex$$ 则 $a_n$ 递 ...
- [物理学与PDEs]第1章第9节 Darwin 模型 9.3 Darwin 模型
1. $\Omega$ 中 ${\bf A}={\bf A}_T+{\bf A}_L$, 其中 $\Div{\bf A}_T=0$, $\rot{\bf A}_L={\bf 0}$. 若 $$\bex ...