思路 :按照操作的时间进行分治,这样转化成了 时间t ,x坐标,y坐标 经典的三维偏序。

最初时间就是递增顺序,无需排序直接进行第二维的分治,类似归并排序处理x坐标,在保证

x有序的情况下进行更新y坐标的树状数组。求一个  (x1,y1)   - (x2,y2)矩形内点的个数,简单容斥一下

求[ (1,1) ——(x1-1,y1-1) ]+[ (1,1) ——(x2,y2) ]-[ (1,1) ——(x1-1,y1) ]-[ (1,1) ——(x1,y1-1) ]

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 2234567
ll op,w,s,x[3],y[3];
ll cnt,q[maxn],tot;
ll ans[maxn],tree[maxn];
struct node
{
int x,y,id,ad;
} data[maxn],cp[maxn];
int lowbit(int x)
{
return x&-x;
}
void add(int x,int d)
{
while(x<=w)
{
tree[x]+=d;
x+=lowbit(x);
}
}
ll query(int x)
{
ll re=0;
while(x>0)
{
re+=tree[x];
x-=lowbit(x);
}
return re;
}
void cdq(int l,int r)
{
if(l>=r)return ;
int mid=(l+r)/2;
cdq(l,mid);
cdq(mid+1,r);
int t1=l,t2=mid+1,ct=l;
while(t2<=r)
{
while(data[t1].x<=data[t2].x&&t1<=mid)
{
if(data[t1].id==0)
add(data[t1].y,data[t1].ad);
cp[ct++]=data[t1++];
}
if(data[t2].id!=0)ans[data[t2].ad]+=query(data[t2].y);
cp[ct++]=data[t2++];
}
for(int i=l; i<t1; i++)
if(data[i].id==0)
add(data[i].y,-data[i].ad);
while(t1<=mid)cp[ct++]=data[t1++];
while(t2<=r)cp[ct++]=data[t2++];
for(int i=l; i<=r; i++)
data[i]=cp[i];
}
int main()
{
scanf("%lld%lld",&s,&w);
while(1)
{
scanf("%lld",&op);
if(op==1)
{
data[++cnt].id=0;
scanf("%lld%lld%lld",&data[cnt].x,&data[cnt].y,&data[cnt].ad);
}
else if(op==2)
{
scanf("%lld%lld%lld%lld",&x[1],&y[1],&x[2],&y[2]);
q[++tot]=cnt+1;
ans[cnt+4]+=(y[2]-y[1]+1)*(x[2]-x[1]+1)*s;
data[++cnt].x=x[1]-1,data[cnt].y=y[1]-1,data[cnt].id=2,data[cnt].ad=cnt;
data[++cnt].x=x[1]-1,data[cnt].y=y[2],data[cnt].id=2,data[cnt].ad=cnt;
data[++cnt].x=x[2],data[cnt].y=y[1]-1,data[cnt].id=2,data[cnt].ad=cnt;
data[++cnt].x=x[2],data[cnt].y=y[2],data[cnt].id=3,data[cnt].ad=cnt;
}
else break;
}
cdq(1,cnt);
for(int i=1; i<=tot; i++)
printf("%lld\n",ans[q[i]+3]-ans[q[i]+1]-ans[q[i]+2]+ans[q[i]]);
return 0;
}

  

BZOJ-10-1176: [Balkan2007]Mokia-CDQ第二类应用的更多相关文章

  1. BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )

    考虑cdq分治, 对于[l, r)递归[l, m), [m, r); 然后计算[l, m)的操作对[m, r)中询问的影响就可以了. 具体就是差分答案+排序+离散化然后树状数组维护.操作数为M的话时间 ...

  2. BZOJ 1176[Balkan2007]Mokia(CDQ分治)

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 3381  Solved: 1520[Submit][S ...

  3. 【BZOJ】1176: [Balkan2007]Mokia(cdq分治)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1176 在写这题的时候思维非常逗啊........2333................... 最后 ...

  4. BZOJ 1176 [Balkan2007]Mokia ——CDQ分治

    [题目分析] 同BZOJ2683,只需要提前处理s对结果的影响即可. CDQ的思路还是很清晰的. 排序解决一维, 分治时间, 树状数组解决一维. 复杂度是两个log [代码] #include < ...

  5. BZOJ 1176: [Balkan2007]Mokia [CDQ分治]

    题意: 有一个n * n的棋盘,每个格子内有一个数,初始的时候全部为0.现在要求维护两种操作: 1)Add:将格子(x, y)内的数加上A. 2)Query:询问矩阵(x0, y0, x1, y1)内 ...

  6. 【BZOJ】1176: [Balkan2007]Mokia

    [题意]n*n的矩阵,初始值为0(题面有误),m次操作,增加一个格子的权值,或查询子矩阵和.n<=2*10^6.(m应该较题面所述偏大). [算法]CDQ分治(算法知识见数据结构) [题解]三维 ...

  7. BZOJ 1176: [Balkan2007]Mokia

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2012  Solved: 896[Submit][St ...

  8. 1176: [Balkan2007]Mokia

    1176: [Balkan2007]Mokia 链接 分析 三维偏序问题,CDQ分治论文题. 代码 #include<bits/stdc++.h> using namespace std; ...

  9. [BZOJ1176][Balkan2007]Mokia cdq+树状数组

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 3134  Solved: 1395[Submit][S ...

  10. bzoj 4555 [Tjoi2016&Heoi2016]求和——NTT+第二类斯特林数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\l ...

随机推荐

  1. django restframeowrk filter,search,order

    django-filters非常成熟,并且支持drf,在url中以Get参数的形式体现 filter 通用过滤 1. 基本配置 $ pip install django-filters setting ...

  2. 去掉 Chrome(V66) 新标签页的8个缩略图

    1.Chrome程序资源文件路径: C:\Program Files (x86)\Google\Chrome\Application\66.0.3359.181\resources.pak 2.下载C ...

  3. pytest 11 allure2生成html报告

    allure是一个report框架,支持java的Junit/testng等框架,当然也可以支持python的pytest框架,也可以集成到Jenkins上展示高大上的报告界面. 环境准备 1.pyt ...

  4. vue---组件间通信

    vue中比较重要的就是组件了.而组件随处可复用的特性,使得组件通信非常重要.那么组件之间通讯方式有哪些呢? 第一种:父子组件通讯: 如果是 html页面 中全局注册的组件 和 实例中局部注册的组件 H ...

  5. JavaXML整理

    XML 浏览器的入口不同(访问路径),访问的资源也不同. 1.1XML语法 1.文档声明必须为<?xml开头,以?>结束; 2.文档声明必须从文档的0行0列位置开始: 3.文档声明只有属性 ...

  6. go 的包

  7. css预编译语言 sass scss(变量$var, css嵌套规则,@import规则,@extend,@mixin)

    什么是sass Sass 是对 CSS 的扩展,让 CSS 语言更强大.优雅. 它允许你使用变量.嵌套规则. mixins.导入等众多功能, 并且完全兼容 CSS 语法. Sass 有助于保持大型样式 ...

  8. [再寄小读者之数学篇](2014-06-22 求极限 [中国科学技术大学2011年高等数学B考研试题])

    设数列 $\sed{x_n}$ 满足 $0<x_1<\pi$, $x_{n+1}=\sin x_n\ (n=1,2,\cdots)$. (1) 证明 $\dps{\vlm{n}x_n}$ ...

  9. MD1——2 Corner

    基本句型 被分为 5 种全然因为[动词] 造成的. 那么补语 就是因为 动词被解释成“是”的时候所需要的一种补足. [补语 Complement 传统的毒瘤说法] 不完全不及物动词 不完全及物动词~~ ...

  10. 【转】mac环境下Android 反编译

    一.需要的工具 apktool:反编译APK文件,得到classes.dex文件,同时也能获取到资源文件以及布局文件. dex2jar:将反编译后的classes.dex文件转化为.jar文件. jd ...