题目链接:

[GXOI/GZOI2019]与或和

既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵。

对于或运算,就是求有多少个子矩形中有$1$。

直接求不好办,考虑有多少个矩形只有$0$。

我们统计以每个$0$为矩形右下角的矩形有多少个。

对于第$i$行的每一列维护出从这一行开始往上有多少个连续的$0$。

现在问题就变成了对于第$i$行的每一列,之前有多少个格子能作为矩形的左上角和它匹配。

用单调栈维护一个单调递增的序列对每行分别统计答案即可。

对于与运算,就是将总子矩形数$-$包含$0$的子矩形数,对$0$再做一遍即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<int,int>
using namespace std;
const int mod=1e9+7;
ll ans1,ans2;
int a[1010][1010];
int b[1010][1010];
int n;
int mx[1010];
int top;
pr st[1010];
ll sum;
ll find1()
{
memset(mx,0,sizeof(mx));
ll res=0;
for(int i=1;i<=n;++i)
{
ll num=0;
top=0;
for(int j=1;j<=n;++j)
{
mx[j]=b[i][j]?mx[j]+1:0;
int len=1;
while(top&&st[top].first>=mx[j])
{
num-=st[top].first*st[top].second;
len+=st[top].second;
top--;
}
num+=mx[j]*len;
res=(res+num)%mod;
st[++top]=make_pair(mx[j],len);
}
}
return res;
}
ll find2()
{
memset(mx,0,sizeof(mx));
ll res=0;
for(int i=1;i<=n;++i)
{
ll num=0;
top=0;
for(int j=1;j<=n;++j)
{
mx[j]=(!b[i][j])?mx[j]+1:0;
int len=1;
while(top&&st[top].first>=mx[j])
{
num-=st[top].first*st[top].second;
len+=st[top].second;
top--;
}
num+=mx[j]*len;
res=(res+num)%mod;
st[++top]=make_pair(mx[j],len);
}
}
return res;
}
int main()
{
scanf("%d",&n);
sum=1ll*n*(n+1)/2*n*(n+1)/2;
sum%=mod;
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
scanf("%d",&a[i][j]);
}
}
for(int k=0;k<=31;++k)
{
for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
if(a[i][j]&(1<<k))
{
b[i][j]=1;
}
else
{
b[i][j]=0;
}
}
}
ans1+=(1ll<<k)%mod*find1()%mod,ans1%=mod;
ans2+=(1ll<<k)%mod*(sum-find2()+mod)%mod,ans2%=mod;
}
ans1=(ans1%mod+mod)%mod,ans2=(ans2%mod+mod)%mod;
printf("%lld %lld",ans1,ans2);
}

[LOJ3083][GXOI/GZOI2019]与或和——单调栈的更多相关文章

  1. 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)

    LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...

  2. [GXOI/GZOI2019]与或和(单调栈)

    想了想决定把这几题也随便水个解题报告... bzoj  luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...

  3. 【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)

    [BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操 ...

  4. LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位

    #3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...

  5. 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】

    题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...

  6. LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)

    题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...

  7. [GXOI/GZOI2019]与或和(位运算,单调栈)

    题目链接懒得放了. 题目大意懒得写了. 省选原题哪有找不到的…… 说实话,其实这题是个大水题,被我十秒钟内口胡出来了. 首先位运算除了拆位还能干啥?以下以与为例,或是差不多的. 我们考虑有多少个子矩阵 ...

  8. [GX/GZOI2019]与或和(单调栈+按位运算)

    首先看到与或,很显然想到按照位拆分运算.然后就变成了0/1矩阵,要使矩阵在当前位与为1,则矩阵全为1,如果是或为1,则是矩阵不全为0,然后求全为0/1的矩阵个数即可.记录c[i][j]表示以a[i][ ...

  9. P5300 [GXOI/GZOI2019]与或和

    题目地址:P5300 [GXOI/GZOI2019]与或和 考虑按位计算贡献 对于 AND 运算,只有全 \(1\) 子矩阵才会有贡献 对于 OR 运算,所以非全 \(0\) 子矩阵均有贡献 如果求一 ...

随机推荐

  1. JS最简单的字符串转数字类型

    以前无休止的写parseInt,特别复杂,现在只需要一个加号,就可以完成对字符串的转换 1 === +"1" amazing!

  2. EBGP在非直连网络时,需要配置ebgp的最大跳数,否则无法建立非直连的EBGP邻居

    结论: 1.默认情况下,EBGP只能在物理直连的路由器之间建立邻居. 2.要想配置非直连设备间的BGP邻居,必须加配置. 组网图: 抓包: 1.默认情况下,EBGP邻居之间的BGP报文的TTL为1. ...

  3. 探究高级的Kotlin Coroutines知识

    要说程序如何从简单走向复杂, 线程的引入必然功不可没, 当我们期望利用线程来提升程序效能的过程中, 处理线程的方式也发生了从原始时代向科技时代发生了一步一步的进化, 正如我们的Elisha大神所著文章 ...

  4. Oracle 12c RAC 安装文档

    参考文档: https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwlin/index.html https://docs. ...

  5. (转载)最完整的自动化测试流程:Python编写执行测试用例及定时自动发送最新测试报告邮件

    今天笔者就要归纳总结下一整套测试流程,从无到有,实现零突破,包括如何编写测试用例,定时执行测试用例,查找最新生成的测试报告文件,自动发送最新测试报告邮件,一整套完整的测试流程.以后各位只要着重如何编写 ...

  6. Git与SVN交叉使用

    将本地git项目添加到远程svn中 git svn [svnprojpath] svnprojpath为原创svn项目路径 -- 文件夹路径,你要放到哪个文件夹 官方文档中带有-s参数,但我这边加了会 ...

  7. 【Python 23】52周存钱挑战3.0(循环计数for与range)

    1.案例描述 按照52周存钱法,存钱人必须在一年52周内,每周递存10元.例如,第一周存10元,第二周存20元,第三周存30元,直到第52周存520元. 记录52周后能存多少钱?即10+20+30+. ...

  8. 【Python 22】52周存钱挑战2.0(列表list和math函数)

    1.案例描述 按照52周存钱法,存钱人必须在一年52周内,每周递存10元.例如,第一周存10元,第二周存20元,第三周存30元,直到第52周存520元. 记录52周后能存多少钱?即10+20+30+. ...

  9. 网络流问题 P2763 试题库问题

    题目描述 «问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同一道题可能有多个类别属性.现要从题库中抽取m 道题组成试卷.并要求试卷包含指定类型的试题.试设计一个满足要求的组卷算法. ...

  10. Redhat7.3更换CentOS7 yum源

    Redhat yum源是收费的,没有注册的Redhat机器是不能使用yum源的. 1.当前系统环境: 系统版本:Red Hat Enterprise Linux Server release 7.3 ...