题目概述:

Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.

You may assume that the array is non-empty and the majority element always exist in the array.

解题思路:

这个题解法很多,官方就给了七种

  • Runtime: O(n2) — Brute force solution: Check each element if it is the majority element.
  • Runtime: O(n), Space: O(n) — Hash table: Maintain a hash table of the counts of each element, then find the most common one.
  • Runtime: O(n log n) — Sorting: As we know more than half of the array are elements of the same value, we can sort the array and all majority elements will be grouped into one contiguous chunk. Therefore, the middle (n/2th) element must also be the majority element.
  • Average runtime: O(n), Worst case runtime: Infinity — Randomization: Randomly pick an element and check if it is the majority element. If it is not, do the random pick again until you find the majority element. As the probability to pick the majority element is greater than 1/2, the expected number of attempts is < 2.
  • Runtime: O(n log n) — Divide and conquer: Divide the array into two halves, then find the majority element A in the first half and the majority element B in the second half. The global majority element must either be A or B. If A == B, then it automatically becomes the global majority element. If not, then both A and B are the candidates for the majority element, and it is suffice to check the count of occurrences for at most two candidates. The runtime complexity, T(n) = T(n/2) + 2n = O(n log n).
  • Runtime: O(n) — Moore voting algorithm: We maintain a current candidate and a counter initialized to 0. As we iterate the array, we look at the current element x:

    If the counter is 0, we set the current candidate to x and the counter to 1.

    If the counter is not 0, we increment or decrement the counter based on whether x is the current candidate.

    After one pass, the current candidate is the majority element. Runtime complexity = O(n).
  • Runtime: O(n) — Bit manipulation: We would need 32 iterations, each calculating the number of 1's for the ith bit of all n numbers. Since a majority must exist, therefore, either count of 1's > count of 0's or vice versa (but can never be equal). The majority number’s ith bit must be the one bit that has the greater count.

    Update (2014/12/24): Improve algorithm on the O(n log n) sorting solution: We do not need to 'Find the longest contiguous identical element' after sorting, the n/2th element is always the majority.

我用python的dict写了个,算在第二种方法里面吧:

class Solution2:
# @param num, a list of integers
# @return an integer
def majorityElement(self, num):
d = {}
l = len(num)
for i in num:
if d.has_key(i):
d[i] += 1
if d[i] > l/2:
return i
else:
d[i] = 1
if d[i] > l/2:
return i

另外借鉴了一下另一种思路:我们不断的同时移除两个不同的数,得到的最终的结果就是满足题意的数,这种思想可以延伸到出现次数大于n/k的情况(当然基于hash的方法也可以),就是同时移除k个不同的数,最后留下的结果就是满足题意的。

class Solution:
# @param num, a list of integers
# @return an integer
def majorityElement(self, num):
res = 0
c = 0
for i in num:
if c == 0:
res = i
c = 1
else:
if res == i:
c += 1
else:
c -= 1
return res

【leetcode】Majority Element的更多相关文章

  1. 【leetcode】Majority Element (easy)(*^__^*)

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  2. 【10_169】Majority Element

    今天遇到的题都挺难的,不容易有会做的. 下面是代码,等明天看看Discuss里面有没有简单的方法~ Majority Element My Submissions Question Total Acc ...

  3. 【数组】Majority Element II

    题目: Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The alg ...

  4. 【leetcode】Remove Element

    题目概述: Given an array and a value, remove all instances of that value in place and return the new len ...

  5. 【leetcode】Remove Element (easy)

    Given an array and a value, remove all instances of that value in place and return the new length. T ...

  6. 【leetcode】1287. Element Appearing More Than 25% In Sorted Array

    题目如下: Given an integer array sorted in non-decreasing order, there is exactly one integer in the arr ...

  7. 【LeetCode】位运算 bit manipulation(共32题)

    [78]Subsets 给了一个 distinct 的数组,返回它所有的子集. Example: Input: nums = [,,] Output: [ [], [], [], [,,], [,], ...

  8. 【LeetCode】分治法 divide and conquer (共17题)

    链接:https://leetcode.com/tag/divide-and-conquer/ [4]Median of Two Sorted Arrays [23]Merge k Sorted Li ...

  9. 【LeetCode 229】Majority Element II

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

随机推荐

  1. 使用最快速的方式激活windows10专业版

    1.安装win10专业版 2.在桌面新建“文本文档.txt” 3.复制如下代码到新新建的“文本文档.txt”中 slmgr /ipk VK7JG-NPHTM-C97JM-9MPGT-3V66T slm ...

  2. AutoVFL(适配)

    1.添加约束(系统) a.一个约束(上下左右) +(instancetype)constraintWithItem:(id)view1 attribute:(NSLayoutAttribute)att ...

  3. java单例的几种实现方法

    java单例的几种实现方法: 方式1: public class Something { private Something() {} private static class LazyHolder ...

  4. (转载)Sumblime Text 2 常用插件以及安装方法

    [内容提要]使用Package Control组件在线安装更方便 安装Sublime Text 2插件的方法: 1.直接安装 安装Sublime text 2插件很方便,可以直接下载安装包解压缩到Pa ...

  5. 线程GCD

    #import "ViewController.h" @interfaceViewController () @end @implementation ViewController ...

  6. ueditor 百度编辑器,取消或自定义右键菜单

    如图:有2种自定义方法,一种是改源码,一种是初始化 初始化,如下代码: var ue = UE.getEditor('XXXid',{ // contextMenu:[ {label:'', cmdN ...

  7. 前端工具之Gulp

    Gulp是一款前端自动化的工具,如果能熟练使用Gulp来进行开发一定可以节省很多的时间,也可以快速的提高工作效率. 在使用Gulp之前就是要配置好Gulp安装的环境,这是我们能使用Gulp快速开发的第 ...

  8. JDI tutorial (trace example)

    Components Debugger Interfaces / |--------------| / | VM | debuggee ----( |--------------| <----- ...

  9. 编译安装 Zend Opcache 缓存Opcache,加速 PHP

    Optimizer+ 是 Zend 开发的闭源但可以免费使用的 PHP 优化加速组件,是第一个也是最快的 opcode 缓存工具.现在,Zend 科技公司将 Optimizer+ 在 PHP Lice ...

  10. java基础知识(一)数据类型(下)

    前面介绍了java的8种基本数据类型,包括boolean, byte, char, short,  int, long, float, double.同时,java也提供了这些类型的封装类,分别为Bo ...