题意:

给定一棵有根树,每个节点有一些石子,每次可以将不多于k的石子移动到父节点

修改一个点的石子数,插入一个点,询问某棵子树是否先手必胜


显然是一个阶梯Nim

每次最多取k个,找规律或者观察式子易发现就是$mod (k+1)$后的Nim

问题变为:

修改点权,插入点,询问某棵子树内某一深度的点权异或和

于是放大招了:伪$ETT$

真正的ETT貌似维护的是边,欧拉遍历序列也是边组成的序列

但我们用Splay来维护欧拉遍历的点的序列,入栈出栈时都加入队列,+1,-1,好像也叫括号序列

$build$过程中保存下每个点入栈和出栈对应的Splay上的节点编号,入栈正出栈负(一开始节点编号和序列编号是一样的)

本题的子树不需要根所以询问子树只要把那段区间splay出来就行了,需要根的找出区间的前驱后继splay他们就好了

加入新节点,分配两个dfs序编号给它,把新父亲和后继splay出来然后连上再更新就行了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define lc t[x].ch[0]
#define rc t[x].ch[1]
#define pa t[x].fa
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=1e5, INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int n, m, k, a[N], Q, op, x, y, z, id[N]; struct edge{int v, ne;} e[N<<];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
}
int eul[N<<], dfc, deep[N];
pii dfn[N];
void dfs(int u) {
dfn[u].fir = ++dfc; eul[dfc]=u;
for(int i=h[u];i;i=e[i].ne)
deep[e[i].v] = deep[u]^, dfs(e[i].v);
dfn[u].sec = ++dfc; eul[dfc]=-u;
} struct meow{int ch[], fa, v, sg[], deep;} t[N<<];
int root;
inline int wh(int x) {return t[pa].ch[] == x;}
inline void update(int x) {
t[x].sg[] = t[lc].sg[]^t[rc].sg[];
t[x].sg[] = t[lc].sg[]^t[rc].sg[];
t[x].sg[t[x].deep] ^= t[x].v;
} inline void rotate(int x) {
int f=t[x].fa, g=t[f].fa, c=wh(x);
if(g) t[g].ch[wh(f)] = x; t[x].fa=g;
t[f].ch[c] = t[x].ch[c^]; t[t[f].ch[c]].fa=f;
t[x].ch[c^]=f; t[f].fa=x;
update(f); update(x);
}
inline void splay(int x, int tar) {
for(; pa!=tar; rotate(x))
if(t[pa].fa != tar) rotate(wh(x)==wh(pa) ? pa : x);
if(tar==) root=x;
} void build(int &x, int l, int r, int f) {
int mid = (l+r)>>; x=mid;
t[x].fa=f; t[x].deep = deep[abs(eul[mid])];
if(eul[mid]>) t[x].v = a[eul[mid]];
if(l<mid) build(lc, l, mid-, x);
if(mid<r) build(rc, mid+, r, x);
update(x);
} int Que(int u) {
int p = dfn[u].fir; splay(p, );
int x = dfn[u].sec; splay(x, p);
return t[lc].sg[deep[u]^] > ;
}
void ChaVal(int u, int d) {
int x = dfn[u].fir; splay(x, );
t[x].v = d; update(x);
}
inline int nex(int x) {
x = rc; while(lc) x = lc; return x;
}
void Add(int u, int v, int d) {
int p = dfn[u].fir; splay(p, );
int x = nex(p); splay(x, p); int a = ++dfc, b = ++dfc;
dfn[v] = MP(a, b);
t[a].ch[] = b; t[b].fa = a;
t[a].fa = x; t[x].ch[] = a;
t[a].v = d; t[a].deep = t[b].deep = deep[v] = deep[u]^;
update(a); update(x); update(p);
} int main() {
freopen("in","r",stdin);
n=read(); k=read()+;
for(int i=; i<=n; i++) a[i]=read()%k, id[i]=i;
for(int i=; i<n; i++) x=read(), y=read(), ins(x, y);
dfs(); build(root, , dfc, );
Q=read();
int meizi=, ans;
for(int i=; i<=Q; i++) {
op=read();
x=read()^meizi; x=id[x];
if(op==) ans=Que(x), meizi+=ans, puts(ans ? "MeiZ" : "GTY");
else {
y=read()^meizi;
if(op==) ChaVal(x, y%k);
else z=(read()^meizi)%k, Add(x, id[y]=++n, z);
} }
return ;
}

BZOJ 3729: Gty的游戏 [伪ETT 博弈论]【学习笔记】的更多相关文章

  1. BZOJ 3729 GTY的游戏

    伪ETT? 貌似就是Splay维护dfn = = 我们首先观察这个博弈 这个博弈直接%(l+1)应该还是很显然的 因为先手怎么操作后手一定能保证操作总数取到(l+1) 于是就变成阶梯Nim了 因为对于 ...

  2. BZOJ 3729 - Gty的游戏(Staircase 博弈+时间轴分块)

    题面传送门 介于自己以前既没有写过 Staircase-Nim 的题解,也没写过时间轴分块的题解,所以现在就来写一篇吧(fog 首先考虑最极端的情况,如果图是一条链,并且链的一个端点是 \(1\),那 ...

  3. BZOJ 3729 Gty的游戏 ——Splay

    很久很久之前,看到Treap,好深啊 很久之前看到Splay,这数据结构太神了. 之后学习了LCT. 然后看到Top-Tree就更觉得神奇了. 知道我见到了这题, 万物基于Splay 显然需要维护子树 ...

  4. 【BZOJ 3729】3729: Gty的游戏 (Splay维护dfs序+博弈)

    未经博主同意不得转载 3729: Gty的游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 448  Solved: 150 Description ...

  5. lua游戏开发实践指南学习笔记1

    本文是依据lua游戏开发实践指南做的一些学习笔记,仅用于继续自己学习的一些知识. Lua基础 1.  语言定义: 在lua语言中,标识符有非常大的灵活性(变量和函数名),只是用户不呢个以数字作为起始符 ...

  6. html5游戏引擎-Pharse.js学习笔记(一)

    1.前言 前几天随着flappy bird这样的小游戏的火爆,使我这种也曾了解过html5技术的js业余爱好者也开始关注游戏开发.研究过两个个比较成熟的html5游戏引擎,感觉用引擎还是要方便一些.所 ...

  7. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  8. BZOJ 3786: 星系探索 [伪ETT]

    传送门 数据,标程 题意: 一颗有根树,支持询问点到根路径权值和,子树加,换父亲 欧拉序列怎么求路径权值和? 一个点的权值只会给自己的子树中的点贡献,入栈权值正出栈权值负,求前缀和就行了! 和上题一样 ...

  9. [BZOJ3786]星系探索(伪ETT)

    3786: 星系探索 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1638  Solved: 506[Submit][Status][Discuss ...

随机推荐

  1. hdu_1754I Hate It(线段树)

    hdu_1754I Hate It(线段树) 标签: 线段树 题目链接 题意: 中文题意...不多说了,线段树基础题 直接上代码: #include<cstdio> #include< ...

  2. js闭包的真正理解

    <高级程序设计>上,这样说:当在函数内部定义了其他函数时候,就创建了闭包.闭包有权访问包含函数内部的所有变量. 这个说的太晦涩了,而且我觉得很容易理解错,闭包就是一个嵌套函数嘛?但是我觉得 ...

  3. Vue.js实现一个SPA登录页面的过程

    技术栈 vue.js 主框架 vuex 状态管理 vue-router 路由管理 一般过程 在一般的登录过程中,一种前端方案是: 检查状态:进入页面时或者路由变化时检查是否有登录状态(保存在cooki ...

  4. springMVC controller配置方式总结

    第一种:不配置controller 的bean.(注解的方式) 在dispatch-servlet.xml中,在beans节点下配置context:component-scan节点 <!-- 启 ...

  5. Spring学习之路二——概念上理解Spring

    一.概念. Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE Develop ...

  6. Java中的SerialVersionUID

    Java中的SerialVersionUID 序列化及SergalVersionUID困扰着许多Java开发人员.我经常会看到这样的问题,什么是SerialVersionUID,如果实现了Serial ...

  7. 洛谷 P1099 树网的核

    P1099 树网的核 题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W ...

  8. 2017-07-06(grep man apropos )

    grep 格式 grep [选项]  字符串  文件名 选项 -i 忽略大小写 -v 排除指定字符串 作用 在文件中查找字符串 例子 grep  "size"  anaconda- ...

  9. 基于jQuery表单快速录入数据功能

    一.功能介绍:完全依靠jQuery,表单table新增行(按键盘tab增一行,按esc删一行),也可以加一个新增行按钮点击新增多行,这里就不多说了~~ 二.该功能主要实现技术: 1,总体.NET MV ...

  10. Django_项目初始化

    如何初始Django运行环境? 1. 安装python 2. 创建Django项目专用的虚拟环境 http://www.cnblogs.com/2bjiujiu/p/7365876.html 3.进入 ...