BZOJ 3729: Gty的游戏 [伪ETT 博弈论]【学习笔记】
题意:
给定一棵有根树,每个节点有一些石子,每次可以将不多于k的石子移动到父节点
修改一个点的石子数,插入一个点,询问某棵子树是否先手必胜
显然是一个阶梯Nim
每次最多取k个,找规律或者观察式子易发现就是$mod (k+1)$后的Nim
问题变为:
修改点权,插入点,询问某棵子树内某一深度的点权异或和
于是放大招了:伪$ETT$
真正的ETT貌似维护的是边,欧拉遍历序列也是边组成的序列
但我们用Splay来维护欧拉遍历的点的序列,入栈出栈时都加入队列,+1,-1,好像也叫括号序列
$build$过程中保存下每个点入栈和出栈对应的Splay上的节点编号,入栈正出栈负(一开始节点编号和序列编号是一样的)
本题的子树不需要根所以询问子树只要把那段区间splay出来就行了,需要根的找出区间的前驱后继splay他们就好了
加入新节点,分配两个dfs序编号给它,把新父亲和后继splay出来然后连上再更新就行了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define lc t[x].ch[0]
#define rc t[x].ch[1]
#define pa t[x].fa
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=1e5, INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} int n, m, k, a[N], Q, op, x, y, z, id[N]; struct edge{int v, ne;} e[N<<];
int cnt, h[N];
inline void ins(int u, int v) {
e[++cnt]=(edge){v, h[u]}; h[u]=cnt;
}
int eul[N<<], dfc, deep[N];
pii dfn[N];
void dfs(int u) {
dfn[u].fir = ++dfc; eul[dfc]=u;
for(int i=h[u];i;i=e[i].ne)
deep[e[i].v] = deep[u]^, dfs(e[i].v);
dfn[u].sec = ++dfc; eul[dfc]=-u;
} struct meow{int ch[], fa, v, sg[], deep;} t[N<<];
int root;
inline int wh(int x) {return t[pa].ch[] == x;}
inline void update(int x) {
t[x].sg[] = t[lc].sg[]^t[rc].sg[];
t[x].sg[] = t[lc].sg[]^t[rc].sg[];
t[x].sg[t[x].deep] ^= t[x].v;
} inline void rotate(int x) {
int f=t[x].fa, g=t[f].fa, c=wh(x);
if(g) t[g].ch[wh(f)] = x; t[x].fa=g;
t[f].ch[c] = t[x].ch[c^]; t[t[f].ch[c]].fa=f;
t[x].ch[c^]=f; t[f].fa=x;
update(f); update(x);
}
inline void splay(int x, int tar) {
for(; pa!=tar; rotate(x))
if(t[pa].fa != tar) rotate(wh(x)==wh(pa) ? pa : x);
if(tar==) root=x;
} void build(int &x, int l, int r, int f) {
int mid = (l+r)>>; x=mid;
t[x].fa=f; t[x].deep = deep[abs(eul[mid])];
if(eul[mid]>) t[x].v = a[eul[mid]];
if(l<mid) build(lc, l, mid-, x);
if(mid<r) build(rc, mid+, r, x);
update(x);
} int Que(int u) {
int p = dfn[u].fir; splay(p, );
int x = dfn[u].sec; splay(x, p);
return t[lc].sg[deep[u]^] > ;
}
void ChaVal(int u, int d) {
int x = dfn[u].fir; splay(x, );
t[x].v = d; update(x);
}
inline int nex(int x) {
x = rc; while(lc) x = lc; return x;
}
void Add(int u, int v, int d) {
int p = dfn[u].fir; splay(p, );
int x = nex(p); splay(x, p); int a = ++dfc, b = ++dfc;
dfn[v] = MP(a, b);
t[a].ch[] = b; t[b].fa = a;
t[a].fa = x; t[x].ch[] = a;
t[a].v = d; t[a].deep = t[b].deep = deep[v] = deep[u]^;
update(a); update(x); update(p);
} int main() {
freopen("in","r",stdin);
n=read(); k=read()+;
for(int i=; i<=n; i++) a[i]=read()%k, id[i]=i;
for(int i=; i<n; i++) x=read(), y=read(), ins(x, y);
dfs(); build(root, , dfc, );
Q=read();
int meizi=, ans;
for(int i=; i<=Q; i++) {
op=read();
x=read()^meizi; x=id[x];
if(op==) ans=Que(x), meizi+=ans, puts(ans ? "MeiZ" : "GTY");
else {
y=read()^meizi;
if(op==) ChaVal(x, y%k);
else z=(read()^meizi)%k, Add(x, id[y]=++n, z);
} }
return ;
}
BZOJ 3729: Gty的游戏 [伪ETT 博弈论]【学习笔记】的更多相关文章
- BZOJ 3729 GTY的游戏
伪ETT? 貌似就是Splay维护dfn = = 我们首先观察这个博弈 这个博弈直接%(l+1)应该还是很显然的 因为先手怎么操作后手一定能保证操作总数取到(l+1) 于是就变成阶梯Nim了 因为对于 ...
- BZOJ 3729 - Gty的游戏(Staircase 博弈+时间轴分块)
题面传送门 介于自己以前既没有写过 Staircase-Nim 的题解,也没写过时间轴分块的题解,所以现在就来写一篇吧(fog 首先考虑最极端的情况,如果图是一条链,并且链的一个端点是 \(1\),那 ...
- BZOJ 3729 Gty的游戏 ——Splay
很久很久之前,看到Treap,好深啊 很久之前看到Splay,这数据结构太神了. 之后学习了LCT. 然后看到Top-Tree就更觉得神奇了. 知道我见到了这题, 万物基于Splay 显然需要维护子树 ...
- 【BZOJ 3729】3729: Gty的游戏 (Splay维护dfs序+博弈)
未经博主同意不得转载 3729: Gty的游戏 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 448 Solved: 150 Description ...
- lua游戏开发实践指南学习笔记1
本文是依据lua游戏开发实践指南做的一些学习笔记,仅用于继续自己学习的一些知识. Lua基础 1. 语言定义: 在lua语言中,标识符有非常大的灵活性(变量和函数名),只是用户不呢个以数字作为起始符 ...
- html5游戏引擎-Pharse.js学习笔记(一)
1.前言 前几天随着flappy bird这样的小游戏的火爆,使我这种也曾了解过html5技术的js业余爱好者也开始关注游戏开发.研究过两个个比较成熟的html5游戏引擎,感觉用引擎还是要方便一些.所 ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- BZOJ 3786: 星系探索 [伪ETT]
传送门 数据,标程 题意: 一颗有根树,支持询问点到根路径权值和,子树加,换父亲 欧拉序列怎么求路径权值和? 一个点的权值只会给自己的子树中的点贡献,入栈权值正出栈权值负,求前缀和就行了! 和上题一样 ...
- [BZOJ3786]星系探索(伪ETT)
3786: 星系探索 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1638 Solved: 506[Submit][Status][Discuss ...
随机推荐
- c语言中标识符的作用域
1.代码块作用域(block scope) 位于一对花括号之间的所有语句称为一个代码块,在代码块的开始位置声明的标识符具有代码块作用域,表示它们可以被这个代码中的所有语句访问.函数定义的形式参数在函数 ...
- EMC题2
易安信笔试题分享:1 protected成员函数能被肿么调用2 “has-a” relationship是指的啥,答案有instance, reference, pointer等...3 int, c ...
- mui 区域三级联动
<link href="../../css/mui.picker.css" rel="stylesheet" /><link href=&qu ...
- [国嵌笔记][030][U-Boot工作流程分析]
uboot工作流程分析 程序入口 1.打开顶层目录的Makefile,找到目标smdk2440_config的命令中的第三项(smdk2440) 2.进入目录board/samsung/smdk244 ...
- UE4 custom depth 自定义深度
用途1: 半透明材质中实现遮挡Mesh自己其他部分的效果. 不遮挡效果如下: 遮挡后效果如下: 实现方法: 深度信息是越远值越大,使用两个Mesh,一个正常渲染,另一个渲染到custom depth ...
- php(ThinkPHP)实现微信小程序的登录过程
源码也在我的github中给出 https://github.com/wulongtao/think-wxminihelper 下面结合thinkPHP框架来实现以下微信小程序的登录流程,这些流程是结 ...
- Struts2 05---拦截器
一.Struts2拦截器原理: Struts2拦截器的实现原理相对简单,使用了aop思想和责任链模式,当请求struts2的action时,Struts 2会查找配置文件,并根据其配置实例化相对的拦截 ...
- jQuery中foreach的continue和break
摘录自:http://blog.csdn.net/penginpha/article/details/12159389 1. continue. 可以使用return. $("***&quo ...
- maven配置文件详解
settings.xml 本篇文章主要对maven中setting.xml配置文件进行解释 1.声明规范 <settings xmlns="http://maven.apache.or ...
- ntp 时钟同步
注意: 如果你无法和外部网络的时钟同步,请检查UDP端口时候被封.