ZOJ 3557 & BZOJ 2982 combination[Lucas定理]
How Many Sets II
Time Limit: 2 Seconds Memory Limit: 65536 KB
Given a set S = {1, 2, ..., n}, number m and p, your job is to count how many set T satisfies the following condition:
- T is a subset of S
- |T| = m
- T does not contain continuous numbers, that is to say x and x+1 can not both in T
Input
There are multiple cases, each contains 3 integers n ( 1 <= n <= 109 ), m ( 0 <= m <= 104, m <= n ) and p ( p is prime, 1 <= p <= 109 ) in one line seperated by a single space, proceed to the end of file.
Output
Output the total number mod p.
Lucas定理p为质数情况裸题
因为是选的元素不能连续,我们先把选的元素拿出来,剩下的元素有n-m+1个空,选m个插进去行了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
ll n,m,P;
ll Pow(ll a,ll b){
ll ans=;
for(;b;b>>=,a=a*a%P)
if(b&) ans=ans*a%P;
return ans;
}
ll Inv(ll a){return Pow(a,P-);}
ll C(ll n,ll m){
if(n<m) return ;
ll x=,y=;
for(ll i=n-m+;i<=n;i++) x=x*i%P;
for(ll i=;i<=m;i++) y=y*i%P;
return x*Inv(y)%P;
}
ll Lucas(ll n,ll m){
if(n<m) return ;
ll re=;
for(;m;n/=P,m/=P) re=re*C(n%P,m%P)%P;
return re;
}
int main(){
//freopen("in","r",stdin);
while(scanf("%lld%lld%lld",&n,&m,&P)!=EOF)
printf("%lld\n",Lucas(n-m+,m));
}
BZOJ 2982: combination
模数10007很小,可以直接线性预处理阶乘和逆元,48ms-->4ms
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
inline ll read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
ll n,m,P=;
ll inv[N],fac[N],facInv[N];
void getInv(int n){
inv[]=fac[]=facInv[]=;
for(int i=;i<=n;i++){
if(i!=) inv[i]=-P/i*inv[P%i]%P;
inv[i]+=inv[i]<?P:;
fac[i]=fac[i-]*i%P;
facInv[i]=facInv[i-]*inv[i]%P;
}
} ll C(ll n,ll m){
if(n<m) return ;
return fac[n]*facInv[m]%P*facInv[n-m]%P;
}
ll Lucas(ll n,ll m){
if(n<m) return ;
ll re=;
for(;m;n/=P,m/=P) re=re*C(n%P,m%P)%P;
return re;
}
int main(){
freopen("in","r",stdin);
getInv(N-);
int T=read();
while(T--){
n=read();m=read();
printf("%lld\n",Lucas(n,m));
}
}
ZOJ 3557 & BZOJ 2982 combination[Lucas定理]的更多相关文章
- BZOJ 2982 combination Lucas定理
题目大意:发上来就过不了审核了--总之大意就是求C(n,m) mod 10007 m,n∈[1,2*10^8] 卢卡斯定理:C(n,m)=C(n%p,m%p)*C(n/p,m/p) mod p 要求p ...
- BZOJ 2982: combination( lucas )
lucas裸题. C(m,n) = C(m/p,n/p)*C(m%p,n%p). ----------------------------------------------------------- ...
- bzoj 2982 combination——lucas模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2982 明明是lucas定理裸题…… 非常需要注意C( )里 if ( n<m ) r ...
- BZOJ 2982: combination Lucas模板题
Code: #include<bits/stdc++.h> #define ll long long #define maxn 1000003 using namespace std; c ...
- bzoj2982: combination(lucas定理板子)
2982: combination Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 664 Solved: 397[Submit][Status][Di ...
- 【BZOJ2982】combination Lucas定理
[BZOJ2982]combination Description LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样.那么LMZ能够持续多少个这样的夜晚呢?当然, ...
- bzoj——2982: combination
2982: combination Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 611 Solved: 368[Submit][Status][Di ...
- BZOJ 2982 combination
lucas定理裸题. #include<iostream> #include<cstdio> #include<cstring> #include<algor ...
- BZOJ 2142: 礼物 [Lucas定理]
2142: 礼物 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1294 Solved: 534[Submit][Status][Discuss] ...
随机推荐
- js随机产生区间数
function selectFrom(startNumber, endNumber) { //1.从几开始 2.到几结束 var choice = endNumber - startNumber + ...
- STM32小结
1.GPIO 电灯 推挽输出 PB5 2.GPIO 按键 浮空输入 PA0 3.写IO高电平 HAL_GPIO_WritePin(GPIOB,GPIO_Pin_5,1); 4.读取IO电平 HAL_G ...
- light oj 1152 Hiding Gold
题目: You are given a 2D board where in some cells there are gold. You want to fill the board with 2 x ...
- springcloud干活之服务消费者(feign)
springcloud系列文章的第三篇 本章将继续讲述springcloud的消费者(feign) Spring Cloud Feign是一套基于Netflix Feign实现的声明式服务调用客户端. ...
- SVN报Previous operation has not finished; run 'cleanup'&
做着项目突然SVN报Previous operation has not finished; run 'cleanup' if it was interrupted,进度又要继续,烦.百度一下发现很多 ...
- 【开发技术】Eclipse插件Call Hierarchy简介及设置
Call Hierarchy 主要功能是 显示一个方法的调用层次(被哪些方法调,调了哪些方法) 在MyEclipse里Help - Software updates - Find and instal ...
- iOS开发中一些有用的小代码
1.判断邮箱格式是否正确的代码: //利用正则表达式验证 -(BOOL)isValidateEmail:(NSString *)email { NSString *emailRegex = @&q ...
- 让自己写的项目支持Cocoapods管理
学会使用别人的 Pods 依赖库以后, 你一定对创建自己的依赖库很有兴趣吧,现在我们一起来制作自己的Pods依赖库. 1.创建自己的 github 仓库 上图中标识出了6处地方 Repository ...
- start tomcat with debugging mode
For this, you must run your application in debug mode, which requires below parameters. -Xdebug -Xru ...
- python_如何对实例属性进行类型检查?
案例: 在某项目中,我们实现了一些类,并希望能像静态语言那样对他们的实例属性进行类型检查 p = Person() p.name = 'xi_xi' # 必须是str p.age = ...