放一道数学题。

Description

  有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

Input

  第一行一个正整数n<=1000000,表示小朋友的个数.接下来n行,每行一个整数ai,表示第i个小朋友得到的糖果的颗数。

Output

  求使所有人获得均等糖果的最小代价。

Sample Input

  4
  1
  2
  5
  4

Sample Output

  4

HINT

  n<=1000000,ai在int范围内。

Solution

  这道题也算是一个经典的绝对值最值模型吧。(小C会说刚拿到这道题拿费用流跑二分图匹配?)

  其实不要想着把一个地方的糖果搬到另一个地方去,我们要把题目化简:

  整个过程都可以看作是一个小朋友向相邻的小朋友传递/接受糖果,

  所以我们很自然地设pi为第i个小朋友向第i-1个(i+1亦可)小朋友传递的糖果数。pi可以为负(就变成了接收的糖果数)。

  所以我们要使答案最小。

  重点来了!看到求绝对值之和最小的式子,根据我们的知识储备,我们推测它和中位数有关。

  可是这里面有n个变量,我们要想办法把它化成只含一个变量的式子。我们开始推式子:

  设ai的平均数为aver,我们有(显而易见的)n个等式:

      ······①

      ······②

    ……

    

  我们观察到,p2其实就是p1加上一个常数;而p3又是p2加上一个常数,所以p3就是p1加上一个常数!

  同理p1~pn都可以用形如p1+d(d为常数)的式子来表示。

  所以设,所以我们只要求的最小值!

  这时候就可以用到我们的知识储备,p1只要取di的中位数的相反数就可以使答案最小!

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define MN 1000005
using namespace std;
int n;
ll a[MN],b[MN],sum,lt,ans; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} int main()
{
register int i;
n=read();
for (i=;i<=n;++i) sum+=a[i]=read();
sum/=n;
for (i=;i<n;++i) b[i+]=b[i]+sum-a[i];
sort(b+,b+n+);
lt=-b[n+>>];
for (i=;i<=n;++i) ans+=abs(lt+b[i]);
printf("%lld",ans);
}

Last Word

  关于数学的最值问题,这种题型只是其中之一,小C以后见到了可能还会继续更新。

[BZOJ]1045 糖果传递(HAOI2008)的更多相关文章

  1. BZOJ 1045 糖果传递(思维)

    设第i个人给了第i+1个人mi个糖果(可以为负),因为最后每个人的糖果都会变成sum/n. 可以得到方程组 mi-mi+1=a[i+1]-sum/n.(1<=i<=n). 把方程组化为mn ...

  2. bzoj 1045糖果传递 数学贪心

    首先我们假设平均数为ave 那么对于第1个人,我们假设他给第N个人K个糖果,第2个人给1,第3个人给2,第n个人给第n-1个人 那么对于第1个人给完n,第2个人给完1,第一个人不会再改变糖果数了,所以 ...

  3. BZOJ 1045 糖果传递

    奇怪的式子.最后发现取中位数. #include<iostream> #include<cstdio> #include<cstring> #include< ...

  4. BZOJ 1045: [HAOI2008] 糖果传递 数学

    1045: [HAOI2008] 糖果传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1045 Description 有n个小朋友坐 ...

  5. 【BZOJ 1045】 1045: [HAOI2008] 糖果传递

    1045: [HAOI2008] 糖果传递 Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数n& ...

  6. bzoj 1045: [HAOI2008] 糖果传递 贪心

    1045: [HAOI2008] 糖果传递 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1812  Solved: 846[Submit][Stat ...

  7. 【BZOJ】【1045/1465】【HAOI2008】糖果传递

    思路题/神奇的转化…… orz hzwer 或许这个思路可以从单行而非环形的递推中找到?(单行的时候,从左往右直接递推即可…… 感觉好神奇>_<脑残患者想不出…… P.S.话说在$n\le ...

  8. [BZOJ 1045] [HAOI2008] 糖果传递

    题目链接:BZOJ 1045 Attention:数据范围中 n <= 10^5 ,实际数据范围比这要大,将数组开到 10^6 就没有问题了. 我们先来看一下下面的这个问题. 若 n 个人坐成一 ...

  9. 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 854  Solved: 476[Submit][Status] ...

随机推荐

  1. nyoj 寻找最大数(二)

    寻找最大数(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 给你一个数字n(可能有前缀0). 要求从高位到低位,进行 进栈出栈 操作,是最后输出的结果最大.   ...

  2. 新手入门 git

    Git是目前世界上最先进的分布式版本控制系统 特点:高端大气上档次 什么是版本控制系统 系统自动记录文件改动 方便同事协作管理 不用自己管理一堆类似的文件了,也不需要把文件传来传去.如果想查看某次改动 ...

  3. linux的链接工具secure设置字体大小和颜色

  4. python构造一个freebuf新闻发送脚本

    前言: 放假学习完web漏洞后.想写一个脚本 然而自己菜无法像大佬们一样写出牛逼的东西 尝试写了,都以失败告终. 还有一个原因:上学时间不能及时看到,自己也比较懒.邮件能提醒自己. 需要安装的模块: ...

  5. MySQL“Another MySQL daemon already running with the same unix socket” 报错信息处理

    Mysql "Another Mysql daemon already running with the same unix socket" 解决办法:rm var/lib/mys ...

  6. Mego(06) - 关系数据库建模

    框架中提供了多种数据注释以便可以全面的描述数据库结构特性. 自增列 可以使用注释声明指定列是数据库自增列,同时能指定自增的起始及步长. public class Blog { [Identity(, ...

  7. Windows用户模式下注入方式总结

    注入技术在病毒木马.游戏.打补丁等编程中应用很广泛,学习该技术不仅能帮助理解Windows工作原理,还能对病毒木马技术手段有更加深刻的理解,下面我们了解下各种注入方式吧. 一.DLL注入 在注入技术中 ...

  8. kubernetes入门(10)kubernetes单机安装后 - helloworld

    前言 查看端口是否被监听了 ::netstat -tlp |grep 31002 我是用的yum install etcd kubernetes docker vim, 这样装的是1.5.2,不是最新 ...

  9. 敏捷项目需求拆解&发现用户故事

    需求文档和敏捷中的Epic,User Story, Task之间是什么关系以及如何将需求文档转换成敏捷方式的描述,指导开发人员. 一直是很多公司团队比较困扰的问题,那么最近笔者为了解决这些问题,上了一 ...

  10. 关于CheckStyle在eclipse出现的问题

    今天在公司换了一个CheckStyle xml文件.那么我尝试直接import进去新的文件. 在我Check code的时候就爆了下面的错误 o: Failed during checkstyle c ...