●BZOJ 3126 [Usaco2013 Open]Photo
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3126
题解:
单调队列优化DP,神奇。。
(好像某次考试考过,当时我用了差分约束+SPFA优化,然后过了。。。)
记 L[i] 表示i左边没有覆盖i点的区间中的最大的左端点
R[i] 表示覆盖i的区间中的最小的左端点的前一个位置,
那么,如果在i位置放一个点的话,在L[i]~R[i]里面也必须要放一个点。
(这两个数组可以O(N)计算前后缀最大最小值得到。)
即定义 DP[i] 为i位置放点时的总点数,
转移:DP[i]=max(DP[j])+1 (L[i]<=j<=R[i])
然后可以用单调队列优化。
和普通的单调队列有点不同,因为多了一个R[i]这个转移的右端点限制。
其实本质还是相同的~~
考虑到L[i],R[i]都单增,
所以在原来队列的首尾指针l,r的基础上多开一个rr指针就好了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 200050
using namespace std;
int L[MAXN],R[MAXN],F[MAXN];
int N,M;
int main(){
static int Q[MAXN],l,r,_r;
scanf("%d%d",&N,&M);
for(int i=1;i<=N+1;i++) R[i]=i-1;
for(int i=1,l,r;i<=M;i++){
scanf("%d%d",&l,&r);
L[r+1]=max(L[r+1],l);
R[r]=min(R[r],l-1);
}
for(int i=2;i<=N+1;i++) L[i]=max(L[i-1],L[i]);
for(int i=N;i>=1;i--) R[i]=min(R[i],R[i+1]);
l=_r=r=1; Q[1]=0;
for(int i=1;i<=N+1;i++){
while(_r<=R[i]&&_r<=N){
if(F[_r]==-1){_r++; continue;}
while(l<=r&&F[Q[r]]<=F[_r]) r--;
Q[++r]=_r; _r++;
}
while(l<=r&&Q[l]<L[i]) l++;
if(l<=r) F[i]=F[Q[l]]+(i!=N+1?1:0);
else F[i]=-1;
}
printf("%d",F[N+1]);
return 0;
}
●BZOJ 3126 [Usaco2013 Open]Photo的更多相关文章
- 数据结构(线段树):BZOJ 3126: [Usaco2013 Open]Photo
3126: [Usaco2013 Open]Photo Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 222 Solved: 116 Descrip ...
- Bzoj 3126[Usaco2013 Open]Photo 题解
3126: [Usaco2013 Open]Photo Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 335 Solved: 169[Submit] ...
- bzoj 3126: [Usaco2013 Open]Photo——单调队列优化dp
Description 给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点 Input * Line 1: Two integers N and M. * Lines 2..M+ ...
- BZOJ 3126 [USACO2013 Open]Photo (单调队列优化DP)
洛谷传送门 题目大意:给你一个长度为$n$的序列和$m$个区间,每个区间内有且仅有一个1,其它数必须是0,求整个序列中数字1最多的数量 神题,竟然是$DP$ 定义$f_{i}$表示第i位放一个1时,最 ...
- bzoj3126[Usaco2013 Open]Photo 单调队列优化dp
3126: [Usaco2013 Open]Photo Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 374 Solved: 188[Submit] ...
- [bzoj 3048] [Usaco2013 Jan]Cow Lineup
[bzoj 3048] [Usaco2013 Jan]Cow Lineup Description 给你一个长度为n(1<=n<=100,000)的自然数数列,其中每一个数都小于等于10亿 ...
- [BZOJ 3126] Photo
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3126 [算法] 差分约束系统 注意SPFA判负环的条件应为 : 若所有点入队次数之和 ...
- BZOJ 3315: [Usaco2013 Nov]Pogo-Cow( dp )
我真想吐槽USACO的数据弱..= = O(n^3)都能A....上面一个是O(n²), 一个是O(n^3) O(n^3)做法, 先排序, dp(i, j) = max{ dp(j, p) } + w ...
- BZOJ 3314: [Usaco2013 Nov]Crowded Cows( 单调队列 )
从左到右扫一遍, 维护一个单调不递减队列. 然后再从右往左重复一遍然后就可以统计答案了. ------------------------------------------------------- ...
随机推荐
- 几种Java的JSON解析库速度对比
java中哪个JSON库的解析速度是最快的? JSON已经成为当前服务器与WEB应用之间数据传输的公认标准,不过正如许多我们所习以为常的事情一样,你会觉得这是理所当然的便不再深入思考 了.我们很少会去 ...
- javascript抛物投栏(抛物线实践)
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线.水平抛物线就是水平匀速,垂直加速的运动. 抛物线的性质:面内与一个定点F和一条定直线l 的距离相等的点的轨迹叫做抛物线. 定点F叫做抛物线的焦点. ...
- C#中委托。
委托(delegate):是一个类型.其实winform中控件的事件也是特殊的委托类型. 如: 自定义委托:自定义委托在winform中的用法. 当要在子线程中更新UI时,必须通过委托来实现. pri ...
- JAVA_SE基础——45.基本类型变量.值交换[独家深入解析]
需求:定义一个函数交换两个基本类型变量的值. 相信看过我前面的文章的同学都应该看的懂我以下的代码: class Demo2 { public static void main(String[] arg ...
- Python内置函数(32)——all
英文文档: all(iterable) Return True if all elements of the iterable are true (or if the iterable is empt ...
- 单点登录实现机制:web-sso
参考链接,感谢作者:https://zm10.sm-tc.cn/?src=l4uLj8XQ0IiIiNGckZ2TkJiM0ZyQktCZlo2Mi5uNmp6S0I/QysrJyszPztGXi5K ...
- 利用JavaScript去掉数组中重复项
利用JavaScript的object的特性,我们可以非常容易的实现将一个数组的重复项去掉. object的特性是:key一定是唯一的. 把数组重复项去掉: 1 将数组转换成一个object对象,数组 ...
- 谈谈自己的理解:python中闭包,闭包的实质
闭包这个概念好难理解,身边朋友们好多都稀里糊涂的,稀里糊涂的林老冷希望写下这篇文章能够对稀里糊涂的伙伴们有一些帮助~ 请大家跟我理解一下,如果在一个函数的内部定义了另一个函数,外部的我们叫他外函数,内 ...
- 上传视频使用ffmpeg自动截取缩略图
上传视频之后,有的需要显示缩略图,而不是仅仅显示视频名称的列表,这时候就需要对上传的视频截取缩略图. 简单粗暴点,将以下代码作为工具类复制粘贴即可: package com.util; import ...
- Vue框架axios请求(类似于ajax请求)
Vue框架axios get请求(类似于ajax请求) 首先介绍下,这个axios请求最明显的地方,通过这个请求进行提交的时候页面不会刷新 <!DOCTYPE html> <html ...