题目描述

小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框。为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和。

对于第 幅画与第 个画框的配对,小T都给出了这个配对的平凡度Aij 与违和度Bij 。整个搭配方案的总体不和谐度为每对画与画框平凡度之和与每对画与画框违和度的乘积。具体来说,设搭配方案中第i幅画与第Pi个画框配对,则总体不和谐度为 小T希望知道通过搭配能得到的最小的总体不和谐度是多少。

输入输出格式

输入格式:

输入文件第 行是一个正整数T ,表示数据组数,接下来是T组数据。对于每组数据,第
行是一个正整数N,表示有N对画和画框。第2到第N+1行,每行有N个非负整数,第i+1 行第j个数表示Aij
。第N+2到第2*N+1行,每行有N个非负整数,第i+N+1 行第j个数表示Bij 。

输出格式:

包含T!行,每行一个整数,表示最小的总体不和谐度

输入输出样例

输入样例#1:
复制

1
3
4 3 2
2 3 4
3 2 1
2 3 2
2 2 4
1 1 3
输出样例#1: 复制

30

说明

第1幅画搭配第3个画框,第2幅画搭配第1个画框,第3 幅画搭配第2个画框,则总体不和谐度为30

N<=70,T<=3,Aij<=200,Bij<=200

学了最小乘积生成树后发现这题很相似

只不过把生成树换成了KM

还有这题求的是最小值,而KM求的是最大匹配
所以权要取负,算出来的点也取负

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
struct Node
{
lol x,y;
};
Node operator -(Node u,Node v)
{
return (Node){u.x-v.x,u.y-v.y};
}
Node operator +(Node u,Node v)
{
return (Node){u.x+v.x,u.y+v.y};
}
lol operator *(Node u,Node v)
{
return u.x*v.y-u.y*v.x;
}
lol a[][],b[][],c[][];
bool vis1[],vis2[];
lol E1[],E2[],n,match[],slack[];
lol ans;
bool dfs(int x)
{int i,j;
vis1[x]=;
for (i=;i<=n;i++)
if (vis2[i]==)
{
lol gap=E1[x]+E2[i]-c[x][i];
if (gap==)
{
vis2[i]=;
if (match[i]==-||dfs(match[i]))
{
match[i]=x;
return ;
}
}
else slack[i]=min(slack[i],gap);
}
return ;
}
Node KM()
{int i,j;
lol tmp;
memset(match,-,sizeof(match));
for (i=;i<=n;i++)
{
E2[i]=;
tmp=;
for (j=;j<=n;j++)
{
if (c[i][j]>tmp) tmp=c[i][j];
}
E1[i]=tmp;
}
for (i=;i<=n;i++)
{
for (j=;j<=n;j++)
slack[j]=1e15;
while ()
{
memset(vis1,,sizeof(vis1));
memset(vis2,,sizeof(vis2));
if (dfs(i)) break;
lol tmp=1e15;
for (j=;j<=n;j++)
if (vis2[j]==&&tmp>slack[j]) tmp=slack[j];
for (j=;j<=n;j++)
{
if (vis1[j]) E1[j]-=tmp;
if (vis2[j]) E2[j]+=tmp;
else slack[j]-=tmp;
}
}
}
lol ansa=,ansb=;
for (i=;i<=n;i++)
ansa+=a[match[i]][i],ansb+=b[match[i]][i];
return (Node){-ansa,-ansb};
}
lol cross(Node p,Node A,Node B)
{
return (A-p)*(B-p);
}
void solve(Node B,Node A)
{int i,j;
Node C;
lol x=(A.y-B.y),y=(B.x-A.x);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
c[i][j]=-a[i][j]*x-b[i][j]*y;
C=KM();
if (C.x*C.y<ans) ans=C.x*C.y;
if (cross(C,B,A)>=) return;
solve(B,C);
solve(C,A);
}
int main()
{Node A,B;
int i,j,T;
cin>>T;
while (T--)
{
cin>>n;
ans=2e9;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
scanf("%lld",&a[i][j]);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
scanf("%lld",&b[i][j]);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
c[i][j]=-b[i][j];
A=KM();
if (A.x*A.y<ans) ans=A.x*A.y;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
c[i][j]=-a[i][j];
B=KM();
if (B.x*B.y<ans) ans=B.x*B.y;
solve(B,A);
printf("%lld\n",ans);
}
}

[HNOI2014]画框的更多相关文章

  1. 【LG3236】[HNOI2014]画框

    [LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...

  2. bzoj 3571: [Hnoi2014]画框

    Description 小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框.为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和.对于第 幅画与第 个画框的配对,小T都 ...

  3. BZOJ3571 & 洛谷3236:[HNOI2014]画框——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3571 https://www.luogu.org/problemnew/show/P3236 小T ...

  4. BZOJ3571 : [Hnoi2014]画框

    题目是要求最小乘积最小权匹配, 将一种方案看做一个二维点(x,y),x=a值的和,y=b值的和,所有方案中只有在下凸壳上的点才有可能成为最优解 首先要求出两端的方案l,r两个点 l就是a值的和最小的方 ...

  5. bzoj3571: [Hnoi2014]画框 最小乘积匹配+最小乘积XX总结,

    思路大概同bzoj2395(传送门:http://www.cnblogs.com/DUXT/p/5739864.html),还是将每一种匹配方案的Σai看成x,Σbi看成y,然后将每种方案转化为平面上 ...

  6. luogu P3236 [HNOI2014]画框

    传送门 我们把一种方案的\(\sum a_{i,j}\)和\(\sum b_{i,j}\)看成点\((\sum a_{i,j},\sum b_{i,j})\),那么就只要求横纵坐标之积最小的点,类似于 ...

  7. 【bzoj3751】 Hnoi2014—画框

    http://www.lydsy.com/JudgeOnline/problem.php?id=3571 (题目链接) 题意 给出一个$2*N$个点的二分图,$N*N$条边,连接$i$和$j$的边有两 ...

  8. BZOJ 3571 [Hnoi2014]画框(最小乘积完美匹配)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3571 [题目大意] 给出一张二分图,每条边上有a,b两个值,求完美匹配, 使得suma ...

  9. 洛谷P3236 [HNOI2014]画框(最小乘积KM)

    题面 传送门 题解 我似乎连\(KM\)都不会打啊→_→ 和bzoj2395是一样的,只不过把最小生成树换成\(KM\)了.因为\(KM\)跑的是最大权值所以取个反就行了 //minamoto #in ...

随机推荐

  1. linux特殊字符及其作用

    1.通配符    ? 匹配单个字符    * 代表所有字符     [abcd] 匹配[]里任意一个字符.4选1 [a-d]    [!abcd]  匹配不含[]里任意一个字符的字符.[^abcd] ...

  2. oralce数据库常用到的一些sql命令(加字段注释,修改数据之类)

    最近开始接触oralce,整理了一下最近使用 pl/sql 常用到的一些sql命令 1.修改表中的数据 编写查询语句及条件,然后加上"FOR UPDATE","FOR U ...

  3. 福州大学软件1715|W班-助教卞倩虹个人简介

    各位好,我是卞倩虹 本科阶段的专业是网络工程,通过学校的学习我掌握了基础的网络组网配置技术,常常在机房配置路由器和交换机等相关设备.后来我接触了软件编程,在深入了解和学习后编程语言后,自主开发了一些项 ...

  4. Beta项目复审

    Beta项目复审 复审人:张宇光 所属团队:MyGod 团队成员:程环宇.王田路.张芷祎.张宇光.王婷婷 团队排名: SW_HW4-team团队 hyw-team团队 Java-Team团队 C++团 ...

  5. verilog学习笔记(2)_一个小module及其tb

    module-ex_cnt module ex_cnt( input wire sclk, input wire rst_n, output wire[9:0] cnt ); reg [9:0] cn ...

  6. iOS开发-OC中TabView的编辑

    UITableView编辑 1> UITableView 编辑流程 2> UITableView 编辑步骤(四步) ① 第一步 : 让 TableView 处于编辑状态(在按钮点击事件方法 ...

  7. 新概念英语(1-129)Seventy miles an hour

    Lesson 129 Seventy miles an hour 时速70英里 Listen to the tape then answer this question. What does Ann ...

  8. NetSNMP开源代码学习——mib扩展

    扩展MIB库关于MIB库的扩展网络文章非常多,这里我主要参考了http://blog.csdn.net/qq_27204267/article/details/51595708,这篇文章介绍的比较简单 ...

  9. *Boosting*笔记

    集成算法之boosting 集成方法  1. Parallel methods:   1. bagging   2. Random Forest  2. Sequence methods:   1. ...

  10. canvas绘制圆心扇形可组成颜色随机的七色小花

    啊~现在应该还是春天吧.心情一如既往的烦闷呐.最近做了一个canvas的扇形绘制的东西.把它整理出来变成一个适合春天的花朵绘制~沉闷的工作环境已经让我这种有趣的人也变成了无聊鬼怪呢.下次一定想找一个年 ...