[HNOI2014]画框
题目描述
小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框。为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和。
对于第 幅画与第 个画框的配对,小T都给出了这个配对的平凡度Aij 与违和度Bij 。整个搭配方案的总体不和谐度为每对画与画框平凡度之和与每对画与画框违和度的乘积。具体来说,设搭配方案中第i幅画与第Pi个画框配对,则总体不和谐度为 小T希望知道通过搭配能得到的最小的总体不和谐度是多少。
输入输出格式
输入格式:
输入文件第 行是一个正整数T ,表示数据组数,接下来是T组数据。对于每组数据,第
行是一个正整数N,表示有N对画和画框。第2到第N+1行,每行有N个非负整数,第i+1 行第j个数表示Aij
。第N+2到第2*N+1行,每行有N个非负整数,第i+N+1 行第j个数表示Bij 。
输出格式:
包含T!行,每行一个整数,表示最小的总体不和谐度
输入输出样例
说明
第1幅画搭配第3个画框,第2幅画搭配第1个画框,第3 幅画搭配第2个画框,则总体不和谐度为30
N<=70,T<=3,Aij<=200,Bij<=200
学了最小乘积生成树后发现这题很相似
只不过把生成树换成了KM
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
struct Node
{
lol x,y;
};
Node operator -(Node u,Node v)
{
return (Node){u.x-v.x,u.y-v.y};
}
Node operator +(Node u,Node v)
{
return (Node){u.x+v.x,u.y+v.y};
}
lol operator *(Node u,Node v)
{
return u.x*v.y-u.y*v.x;
}
lol a[][],b[][],c[][];
bool vis1[],vis2[];
lol E1[],E2[],n,match[],slack[];
lol ans;
bool dfs(int x)
{int i,j;
vis1[x]=;
for (i=;i<=n;i++)
if (vis2[i]==)
{
lol gap=E1[x]+E2[i]-c[x][i];
if (gap==)
{
vis2[i]=;
if (match[i]==-||dfs(match[i]))
{
match[i]=x;
return ;
}
}
else slack[i]=min(slack[i],gap);
}
return ;
}
Node KM()
{int i,j;
lol tmp;
memset(match,-,sizeof(match));
for (i=;i<=n;i++)
{
E2[i]=;
tmp=;
for (j=;j<=n;j++)
{
if (c[i][j]>tmp) tmp=c[i][j];
}
E1[i]=tmp;
}
for (i=;i<=n;i++)
{
for (j=;j<=n;j++)
slack[j]=1e15;
while ()
{
memset(vis1,,sizeof(vis1));
memset(vis2,,sizeof(vis2));
if (dfs(i)) break;
lol tmp=1e15;
for (j=;j<=n;j++)
if (vis2[j]==&&tmp>slack[j]) tmp=slack[j];
for (j=;j<=n;j++)
{
if (vis1[j]) E1[j]-=tmp;
if (vis2[j]) E2[j]+=tmp;
else slack[j]-=tmp;
}
}
}
lol ansa=,ansb=;
for (i=;i<=n;i++)
ansa+=a[match[i]][i],ansb+=b[match[i]][i];
return (Node){-ansa,-ansb};
}
lol cross(Node p,Node A,Node B)
{
return (A-p)*(B-p);
}
void solve(Node B,Node A)
{int i,j;
Node C;
lol x=(A.y-B.y),y=(B.x-A.x);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
c[i][j]=-a[i][j]*x-b[i][j]*y;
C=KM();
if (C.x*C.y<ans) ans=C.x*C.y;
if (cross(C,B,A)>=) return;
solve(B,C);
solve(C,A);
}
int main()
{Node A,B;
int i,j,T;
cin>>T;
while (T--)
{
cin>>n;
ans=2e9;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
scanf("%lld",&a[i][j]);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
scanf("%lld",&b[i][j]);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
c[i][j]=-b[i][j];
A=KM();
if (A.x*A.y<ans) ans=A.x*A.y;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
c[i][j]=-a[i][j];
B=KM();
if (B.x*B.y<ans) ans=B.x*B.y;
solve(B,A);
printf("%lld\n",ans);
}
}
[HNOI2014]画框的更多相关文章
- 【LG3236】[HNOI2014]画框
[LG3236][HNOI2014]画框 题面 洛谷 题解 和这题一模一样. 将最小生成树换成\(KM\)即可. 关于复杂度,因为决策点肯定在凸包上,且\(n\)凸包的期望点数为\(\sqrt {\l ...
- bzoj 3571: [Hnoi2014]画框
Description 小T准备在家里摆放几幅画,为此他买来了N幅画和N个画框.为了体现他的品味,小T希望能合理地搭配画与画框,使得其显得既不过于平庸也不太违和.对于第 幅画与第 个画框的配对,小T都 ...
- BZOJ3571 & 洛谷3236:[HNOI2014]画框——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3571 https://www.luogu.org/problemnew/show/P3236 小T ...
- BZOJ3571 : [Hnoi2014]画框
题目是要求最小乘积最小权匹配, 将一种方案看做一个二维点(x,y),x=a值的和,y=b值的和,所有方案中只有在下凸壳上的点才有可能成为最优解 首先要求出两端的方案l,r两个点 l就是a值的和最小的方 ...
- bzoj3571: [Hnoi2014]画框 最小乘积匹配+最小乘积XX总结,
思路大概同bzoj2395(传送门:http://www.cnblogs.com/DUXT/p/5739864.html),还是将每一种匹配方案的Σai看成x,Σbi看成y,然后将每种方案转化为平面上 ...
- luogu P3236 [HNOI2014]画框
传送门 我们把一种方案的\(\sum a_{i,j}\)和\(\sum b_{i,j}\)看成点\((\sum a_{i,j},\sum b_{i,j})\),那么就只要求横纵坐标之积最小的点,类似于 ...
- 【bzoj3751】 Hnoi2014—画框
http://www.lydsy.com/JudgeOnline/problem.php?id=3571 (题目链接) 题意 给出一个$2*N$个点的二分图,$N*N$条边,连接$i$和$j$的边有两 ...
- BZOJ 3571 [Hnoi2014]画框(最小乘积完美匹配)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3571 [题目大意] 给出一张二分图,每条边上有a,b两个值,求完美匹配, 使得suma ...
- 洛谷P3236 [HNOI2014]画框(最小乘积KM)
题面 传送门 题解 我似乎连\(KM\)都不会打啊→_→ 和bzoj2395是一样的,只不过把最小生成树换成\(KM\)了.因为\(KM\)跑的是最大权值所以取个反就行了 //minamoto #in ...
随机推荐
- Alpha冲刺Day11
Alpha冲刺Day11 一:站立式会议 今日安排: 由周静平继续完成昨日第三方机构剩余的核实企业风险数据和企业风险数据详情模块 由张梨贤和黄腾飞共同完成第三方机构的分级统计展示模块 由林静开始登录/ ...
- PTA题目的處理(四)
题目7-3 求交错序列前N项和 1.实验代码 #include <stdio.h> //#include <stdlib.h> int main() { ,N; double ...
- 手把手教你 LabVIEW 串口仪器控制——VISA 驱动下载安装篇
仪器控制,核心在于 VISA 函数..有些仪器可能不需要 VISA,有自己的 DLL 什么的,我就管不着. 正常情况下,大家安装的 LabVIEW,都是不带 VISA 驱动 ...
- 推荐net开发cad入门阅读代码片段
转载自 Cad人生 的博客 链接:http://www.cnblogs.com/cadlife/articles/2668158.html 内容粘贴如下,小伙伴们可以看看哦. using Syst ...
- New UWP Community Toolkit - AdaptiveGridView
概述 UWP Community Toolkit 中有一个自适应的 GridView 控件 - AdaptiveGridView,本篇我们结合代码详细讲解 AdaptiveGridView 的实现 ...
- JavaScript 实现二叉树
JavaScript 实现二叉树: // JavaScript 实现二叉树 function BinaryTree () { var Node = function (key) { this.key ...
- VMware虚拟机,从厚置备改成精简置备,并减小硬盘的实际占用空间
工作中由于前期规划不足,导致磁盘空间分配较大,而且是厚置备.后期不再需要时,无法把用不到的空间释放出来,造成空间浪费.经过摸索和实验验证,总结出来一套方法. 风险提示:这个方法在我的环境中验证通过了, ...
- python入门(11)条件判断和循环
python入门(11)条件判断和循环 条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: ag ...
- 前端学习之jquery/下
前端学习之jquery 一 属性操作 html(): console.log($("div").html()); $(".test").html("& ...
- Java-NIO(八):DatagramChannel
Java NIO中的DatagramChannel是一个能收发UDP包的通道.操作步骤: 1)打开 DatagramChannel 2)接收/发送数据 同样它也支持NIO的非阻塞模式操作,例如: @T ...