来自FallDream的博客,未经允许,请勿转载,谢谢。


传送门

区间最大值的题emmmm

想到构建笛卡尔树,这样自然就想到了一种dp

f[i][j]表示大小为i的笛卡尔树,根的权值是j的答案。

转移的时候枚举左右子树的大小,对权值那一维前缀和转移。

然后在每次转移的时候,把已经可以确定最大值的段的贡献乘进去就可以了。

#include<iostream>
#include<cstdio>
#define MN 400
#define mod 998244353
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int w[MN+],f[MN+][MN+],n,K,pw[MN+][MN+];
int main()
{
n=read();K=read();f[][]=;
for(int i=;i<=n;++i) w[i]=read(),f[][i]=,pw[i][]=;
for(int i=;i<=n;++i) for(int j=;j<=n;++j) pw[i][j]=1LL*pw[i][j-]*w[i]%mod;
for(int i=;i<=n;++i)
{
for(int k=;k<=n;++k)
for(int j=;j<i;++j)
{
int res=1LL*f[j][k]*f[i--j][k-]%mod;
if(i>=K) res=1LL*res*pw[k][max(,min(,i-j--K+)-max(-K+,-j)+)]%mod;
f[i][k]=(f[i][k]+res)%mod;
}
for(int k=;k<=n;++k) f[i][k]=(f[i][k]+f[i][k-])%mod;
}
printf("%d\n",f[n][n]);
return ;
}

[UOJ UNR #2]积劳成疾的更多相关文章

  1. UOJ.311.[UNR#2]积劳成疾(DP)

    UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...

  2. 【uoj#311】[UNR #2]积劳成疾 dp

    题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...

  3. [UOJ UNR#1]奇怪的线段树

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...

  4. [UOJ UNR#2 黎明前的巧克力]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...

  5. [UOJ UNR#2 UOJ拯救计划]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...

  6. 【UOJ UNR #1】争夺圣杯

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 考虑直接对每个数字,统计它会产生的贡献. 单调栈求出每个数字左边第一个大等于他的数,右边第一个大于他的 (注意只能有一边取等) 假设左 ...

  7. 【UOJ UNR #1】火车管理

    来自FallDream的博客,未经允许,请勿转载,谢谢. 题面 考虑用可持久化线段树直接维护每个点在不同时刻,第一辆车的编号. 这样3操作就变成了区间赋值,1操作变成区间和 2操作的话,只需要查询一下 ...

  8. 【UOJ UNR #1】火车管理 可持久化线段树

    用可持久化线段树维护每个站的第一辆车和每个站的前一次更新的位置即可. #include<iostream> #include<cstring> #include<cstd ...

  9. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

随机推荐

  1. 201621123031 《Java程序设计》第13周学习总结

    作业13-网络 1.本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被 ...

  2. asp.net web api 控制器

    1控制器操作的参数 控制器操作的参数可以是内置类型也可以是自定义类型,无参也是允许的. 2控制器操作返回值 类型 说明 void 操作返回值为void时,Web API返回空HTTP响应,其状态码为2 ...

  3. java异常常见面试问题

    java异常常见面试问题 一.java异常的理解 异常主要是处理编译期不能捕获的错误.出现问题时能继续顺利执行下去,而不导致程序终止,确保程序的健壮性. 处理过程:产生异常状态时,如果当前的conte ...

  4. 在Vim按了ctrl+s后

    在windows我们码代码的时候习惯ctrl+s保存: 但在vim中使用ctrl+s之后终端就没反应了... vim: ctrl+s终止屏幕输出,敲的东西都有效,就是看不见. ctrl+q恢复:

  5. 阿里云API网关(4)快速入门(开放 API)

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  6. YML(2)yml 语法

    YAML 语法 来源:yaml 这个页面提供一个正确的 YAML 语法的基本概述, 它被用来描述一个 playbooks(我们的配置管理语言). 我们使用 YAML 是因为它像 XML 或 JSON ...

  7. linux环境安装mysql,以及mysql基本的终端操作命令

    linux环境下安装mysql服务器.客户端mysql简单的终端操作指令(使用数据库.简单的增删改查和备份恢复)1 SQL: Structured Query Language 结构化查询语言. 运用 ...

  8. Python之面向对象三

    面向对象的三大特性: 多态 多态指的是一类事物有多种形态.Python3天生支持多态. 动物有多种形态:人,狗,猪 import abc class Animal(metaclass=abc.ABCM ...

  9. Python之日志 logging模块

    关于logging模块的日志功能 典型的日志记录的步骤是这样的: 创建logger 创建handler 定义formatter 给handler添加formatter 给logger添加handler ...

  10. vue组件详解(五)——组件高级用法

    一.递归组件 组件在它的模板内可以递归地调用自己, 只要给组件设置name 的选项就可以了. 示例如下: <div id="app19"> <my-compone ...