来自FallDream的博客,未经允许,请勿转载,谢谢。


传送门

区间最大值的题emmmm

想到构建笛卡尔树,这样自然就想到了一种dp

f[i][j]表示大小为i的笛卡尔树,根的权值是j的答案。

转移的时候枚举左右子树的大小,对权值那一维前缀和转移。

然后在每次转移的时候,把已经可以确定最大值的段的贡献乘进去就可以了。

#include<iostream>
#include<cstdio>
#define MN 400
#define mod 998244353
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int w[MN+],f[MN+][MN+],n,K,pw[MN+][MN+];
int main()
{
n=read();K=read();f[][]=;
for(int i=;i<=n;++i) w[i]=read(),f[][i]=,pw[i][]=;
for(int i=;i<=n;++i) for(int j=;j<=n;++j) pw[i][j]=1LL*pw[i][j-]*w[i]%mod;
for(int i=;i<=n;++i)
{
for(int k=;k<=n;++k)
for(int j=;j<i;++j)
{
int res=1LL*f[j][k]*f[i--j][k-]%mod;
if(i>=K) res=1LL*res*pw[k][max(,min(,i-j--K+)-max(-K+,-j)+)]%mod;
f[i][k]=(f[i][k]+res)%mod;
}
for(int k=;k<=n;++k) f[i][k]=(f[i][k]+f[i][k-])%mod;
}
printf("%d\n",f[n][n]);
return ;
}

[UOJ UNR #2]积劳成疾的更多相关文章

  1. UOJ.311.[UNR#2]积劳成疾(DP)

    UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...

  2. 【uoj#311】[UNR #2]积劳成疾 dp

    题目描述 一个长度为 $n$ 的序列,每个数在 $[1,n]$ 之间.给出 $m$ ,求所有序列的 $\prod_{i=1}^{n-m+1}(\text{Max}_{j=i}^{j+m-1}a[j]) ...

  3. [UOJ UNR#1]奇怪的线段树

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...

  4. [UOJ UNR#2 黎明前的巧克力]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 很奇妙的一道题 首先不难发现一个暴力做法,就是f[i]表示异或和为i的答案数,每次FWT上一个F数组,其中F[0]=1,F[ai]=2 ...

  5. [UOJ UNR#2 UOJ拯救计划]

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 感觉这题有点神... 模数是6比较奇怪,考虑计算答案的式子. Ans=$\sum_{i=1}^{k} P(k,i)*ans(i)$ a ...

  6. 【UOJ UNR #1】争夺圣杯

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 考虑直接对每个数字,统计它会产生的贡献. 单调栈求出每个数字左边第一个大等于他的数,右边第一个大于他的 (注意只能有一边取等) 假设左 ...

  7. 【UOJ UNR #1】火车管理

    来自FallDream的博客,未经允许,请勿转载,谢谢. 题面 考虑用可持久化线段树直接维护每个点在不同时刻,第一辆车的编号. 这样3操作就变成了区间赋值,1操作变成区间和 2操作的话,只需要查询一下 ...

  8. 【UOJ UNR #1】火车管理 可持久化线段树

    用可持久化线段树维护每个站的第一辆车和每个站的前一次更新的位置即可. #include<iostream> #include<cstring> #include<cstd ...

  9. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

随机推荐

  1. 201621123031 《Java程序设计》第7周学习总结

    作业07-Java GUI编程 1.本周学习总结 1.1 思维导图:Java图形界面总结 1.2 可选:使用常规方法总结其他上课内容. 事件监听器: Java事件监听器是由事件类和监听接口组成,自定义 ...

  2. Android网络传输中必用的两个加密算法:MD5 和 RSA 及Base64加密总结

    (1)commons-codec包简介 包含一些通用的编码解码算法.包括一些语音编码器,Hex,Base64.MD5 一.md5.base64.commons-codec包 commons-codec ...

  3. img加载卡顿,解决办法

    我觉得我在这个项目里遇到了太多的第一次.比如上一篇博文:在在360.UC等浏览器,img不加载原因. 当前情况是:图片加载缓慢,图片加载时出现卡顿. 上图:我缩放了图片,估计有点变形.能说明情况就行, ...

  4. Linux环境下发布.net core

    一.安装Linux环境 1. 安装VM虚拟机和操作系统 VM虚拟工具安装的过程详见:http://blog.csdn.net/stpeace/article/details/78598333.直接按照 ...

  5. dede观看总结自己总结

    知识点一:{dede:arclist channelid="18" addfields="language,pfz" limit="0,5" ...

  6. Python内置函数(63)——property

    英文文档: class property(fget=None, fset=None, fdel=None, doc=None) Return a property attribute. fget is ...

  7. Linux下的Shell编程(1)最简单的例子

    深入地了解和熟练地掌握Shell编程,是每一个Linux用户的必修 功课之一. 从第一行开始 我们可以使用任意一种文字编辑器编写shell脚本,它必须以如下行开始(必须放在文件的第一行): #!/bi ...

  8. Spring Security 入门(3-10)Spring Security 的四种使用方式

    原文链接: http://www.360doc.com/content/14/0724/17/18637323_396779659.shtml 下面是作者的一个问题处理

  9. Python入门之迭代器/生成器/yield的表达方式/面向过程编程

    本章内容 迭代器 面向过程编程 一.什么是迭代 二.什么是迭代器 三.迭代器演示和举例 四.生成器yield基础 五.生成器yield的表达式形式 六.面向过程编程 ================= ...

  10. CMDB资产采集

    Agent(方式) 1:服务器每台都需要安装Agent 达到采集速度快,简单:造成性能损耗 获取每台服务器的资产并有返回值:v=subprocess.getoutput('dir')或者ipconfi ...