[bzoj4850][Jsoi2016]灯塔
#include<iostream>
#include<cstdio>
#include<cmath>
#define getchar() (*S++)
#define MN 500000
#define INF 2000000000
char B[<<],*S=B;
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} int n,a[MN+],top,tail,q[MN+];
double F[MN+],G[MN+],sq[MN+];
inline int My_abs(int x){return x<?-x:x;}
double Get(int x,int y){return a[x]+sq[My_abs(y-x)];} int Calc(int x,int y)
{
int l=y,r=n,mid,ans=INF;
while(l<=r)
{
mid=l+r>>;
if(Get(y,mid)>=Get(x,mid)) ans=mid,r=mid-;
else l=mid+;
}
return ans;
} void Solve(double*f)
{
top=;tail=;
for(register int i=;i<=n;++i)
{
if(top<tail||a[i]>a[q[top]])
{
while(top>tail&&Calc(q[top],i)<=Calc(q[top-],q[top])) --top;
q[++top]=i;
}
while(top>tail&&Calc(q[tail],q[tail+])<=i) ++tail;
f[i]=Get(q[tail],i)-a[i];
}
} int main()
{
fread(B,,<<,stdin);
n=read();
for(int i=;i<=n;++i) sq[i]=sqrt(i);
for(int i=;i<=n;++i) a[i]=read();
Solve(F);
for(int i=;i<=n>>;++i) swap(a[i],a[n+-i]);
Solve(G);
for(int i=;i<=n;++i) printf("%d\n",max(,(int)ceil(max(F[i],G[n+-i]))));
return ;
}
[bzoj4850][Jsoi2016]灯塔的更多相关文章
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
- BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)
即对每个i最大化hj-hi+sqrt(|i-j|).先把绝对值去掉,正反各做一次即可.注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i ...
- [JSOI2016]灯塔
Description $JSOI$的国境线上有$N$一座连续的山峰,其中第$i$座的高度是$h_i$.为了简单起见,我们认为这$N$座山峰排成了连续一条直线. 如果在第$i$座山峰上建立一座高度 ...
- [BZOJ 4850][Jsoi2016]灯塔
传送门 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=a;i<=b;++i) ...
- DP学习记录Ⅱ
DP学习记录Ⅰ 以下为 DP 的优化. 人脑优化DP P5664 Emiya 家今天的饭 正难则反.考虑计算不合法方案.一个方案不合法一定存在一个主食,使得该主食在多于一半的方法中出现. 枚举这个&q ...
- 「JSOI2016」灯塔
「JSOI2016」灯塔 传送门 我们先只计算照亮左边的灯塔的最低高度,计算右边的类同,然后只要取 \(\max\) 就好了. 那么稍微整理一下式子:\(p_i \ge h_j - h_i + \sq ...
- loj2074 「JSOI2016」灯塔
loj 题面错的--去bzoj上看吧qwq 观察到 \(\sqrt{|i-j|}\) 的取值只有 \(\sqrt{n}\) 级别个,然后就很显然了,rmq. #include <iostream ...
- ACM/ICPC 之 快排+归并排序-记录顺序对(TSH OJ-LightHouse(灯塔))
TsingHua OJ 上不能使用<algorithm>头文件,因此需要手写快排(刚开始写的时候自己就出了很多问题....),另外本题需要在给横坐标排序后,需要记录纵坐标的顺序对的数量,因 ...
- 【Tsinghua OJ】灯塔(LightHouse)问题
描述 海上有许多灯塔,为过路船只照明.从平面上看,海域范围是[1, 10^8] × [1, 10^8] . (图一) 如图一所示,每个灯塔都配有一盏探照灯,照亮其东北.西南两个对顶的直角区域.探照灯的 ...
随机推荐
- django的模板(二)
模板(二) 实验简介 本节继续介绍模板的常用标签,for.if.ifequal和注释标签. 一.基本的模板标签和过滤器 1. 标签 if/else {% if %} 标签检查(evaluate)一个变 ...
- 【基础知识】Flex-弹性布局原来如此简单!!
简言 布局的传统解决方案是基于盒状模型,依赖 display + position + float 方式来实现,灵活性较差.2009年,W3C提出了一种新的方案-Flex,Flex是Flexible ...
- HTML5 canvas绘制雪花飘落
Canvas是HTML5新增的组件,它就像一块幕布,可以用JavaScript在上面绘制各种图表.动画等. 没有Canvas的年代,绘图只能借助Flash插件实现,页面不得不用JavaScript和F ...
- TF中conv2d和kernel_initializer方法
conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...
- 自动化服务部署(二):Linux下安装jenkins
jenkins是一个Java开发的开源持续集成工具,广泛用于项目开发,具有自动化构建.测试和部署等功能,它的运行需要Java环境. 上篇博客介绍了Linux下安装JDK的步骤,这篇博客,介绍下Linu ...
- Python-Cpython解释器支持的进程与线程-Day9
Cpython解释器支持的进程与线程 阅读目录 一 python并发编程之多进程 1.1 multiprocessing模块介绍 1.2 Process类的介绍 1.3 Process类的使用 1.4 ...
- JMeter入门(03)多台JMeter联合测试
一.配置各个节点 1.配置jmeter.properties # Remote Hosts - comma delimited#remote_hosts=localhost:1099,localhos ...
- 解决编写的 html 乱码问题
- Linux下的Shell编程(1)最简单的例子
深入地了解和熟练地掌握Shell编程,是每一个Linux用户的必修 功课之一. 从第一行开始 我们可以使用任意一种文字编辑器编写shell脚本,它必须以如下行开始(必须放在文件的第一行): #!/bi ...
- 离线Chrome插件安装文件(crx)的安装方法
离线Chrome插件安装文件(crx)的安装方法 一.正常安装方法 1.开发谷歌浏览器,设置->扩展程序 在打开的谷歌浏览器的扩展管理器中用户可以看到一些已经安装程序的Chrome插件,或者一个 ...