【HNOI2016】序列 莫队+单调栈+RMQ
Description
给定长度为n的序列:a1,a2,…,an,记为a[1:n]。类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-
1,ar。若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列。现在有q个询问,每个询问给定两个数l和r,1≤l≤r
≤n,求a[l:r]的不同子序列的最小值之和。例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有
6个子序列a[1:1],a[2:2],a[3:3],a[1:2],a[2:3],a[1:3],这6个子序列的最小值之和为5+2+4+2+2+2=17。
Input
输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数。接下来一行,包含n个整数,以空格隔开
,第i个整数为ai,即序列第i个元素的值。接下来q行,每行包含两个整数l和r,代表一次询问。
Output
对于每次询问,输出一行,代表询问的答案。
Sample Input
5 2 4 1 3
1 5
1 3
2 4
3 5
2 5
Sample Output
17
11
11
17
HINT
1 ≤N,Q ≤ 100000,|Ai| ≤ 10^9
题解:
这题思路莫名清晰,一看没有修改果断上莫队
然后移动指针r时会产生(r-l+1)个新区间 考虑每一个区间的最小值是谁,我们就统计一个数对哪些区间有贡献
很容易得知:设pre[i]为i之前第一个比a[i]小的数,于是i的贡献就是(i-pre[i]+1)*a[i] 而pre[i]的贡献为(pre[i]-pre[pre[i]]+1)*a[pre[i]] 以此类推 设[l,r]区间的最小值所在位置为kt,kt产生的贡献即为(kt-i+1)*a[kt],所以pre[i]一直往前走到kt位置
然后为了统计的效率,我们处理一个前缀和数组,含义大概就是上面那个沿着pre走,走到0为止的和
sum[i]可以递推出来:sum[i]=sum[pre[i]]+(i-pre[i]+1)*a[i].
L指针的移动同理,改成减去即可
然后pre数组单调栈处理
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ls (node<<1)
#define rs (node<<1|1)
using namespace std;
const int N=,INF=;
typedef long long ll;
int gi(){
int str=,f=;char ch=getchar();
while(ch>'' || ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<='')str=str*+ch-'',ch=getchar();
return str*f;
}
int n,m,a[N],Tree[N*],ct,pre[N],nxt[N],q[N],maxdep,f[N][];
ll as=,suml[N],sumr[N],ans[N];
struct AKK{
int l,r,id;
}ques[N];
bool comp(const AKK &p,const AKK &qq)
{
if(p.l/ct!=qq.l/ct)return p.l/ct<qq.l/ct;
return p.r<qq.r;
}
void prework()
{
q[]=;int r=;
for(int i=;i<=n;i++)
{
while(r> && a[i]<=a[q[r]])r--;
pre[i]=q[r];
q[++r]=i;
}
r=;q[]=n+;
for(int i=n;i>=;i--)
{
while(r> && a[i]<=a[q[r]])r--;
nxt[i]=q[r];
q[++r]=i;
}
for(int i=;i<=n;i++)suml[i]=suml[pre[i]]+(ll)(i-pre[i])*a[i];
for(int i=n;i>=;i--)sumr[i]=sumr[nxt[i]]+(ll)(nxt[i]-i)*a[i];
}
int Ask(int l,int r)
{
int k=(int)(log(r-l+)/log()),to=r-(<<k)+;
if(a[f[l][k]]<=a[f[to][k]])return f[l][k];
return f[to][k];
}
ll pl(int l,int r)
{
int kt=Ask(l,r);
ll cnt=(ll)(kt-l+)*a[kt];
cnt+=suml[r]-suml[kt];
return cnt;
}
ll pr(int l,int r)
{
int kt=Ask(l,r);
ll cnt=(ll)(r-kt+)*a[kt];
cnt+=sumr[l]-sumr[kt];
return cnt;
}
void work()
{
int l=,r=;as=a[];
for(int i=;i<=m;i++)
{
while(r<ques[i].r)r++,as+=pl(l,r);
while(r>ques[i].r)as-=pl(l,r),r--;
while(l<ques[i].l)as-=pr(l,r),l++;
while(l>ques[i].l)l--,as+=pr(l,r);
ans[ques[i].id]=as;
}
}
void gf()
{
for(int j=;j<=maxdep;j++)
for(int i=;i+(<<j)-<=n;i++)
{
int to=i+(<<(j-));
if(a[f[i][j-]]>a[f[to][j-]])f[i][j]=f[to][j-];
else f[i][j]=f[i][j-];
}
}
int main()
{
n=gi();m=gi();
for(int i=;i<=n;i++)a[i]=gi(),f[i][]=i;
maxdep=log(n)/log();
gf();
for(int i=;i<=m;i++)ques[i].l=gi(),ques[i].r=gi(),ques[i].id=i;
ct=sqrt(n);
sort(ques+,ques+m+,comp);
prework();
work();
for(int i=;i<=m;i++)printf("%lld\n",ans[i]);
return ;
}
【HNOI2016】序列 莫队+单调栈+RMQ的更多相关文章
- [HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ) 洛谷 bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...
- BZOJ.4540.[HNOI2016]序列(莫队/前缀和/线段树 单调栈 RMQ)
BZOJ 洛谷 ST表的一二维顺序一定要改过来. 改了就rank1了哈哈哈哈.自带小常数没办法. \(Description\) 给定长为\(n\)的序列\(A_i\).\(q\)次询问,每次给定\( ...
- 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈
[BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...
- [luogu3246][bzoj4540][HNOI2016]序列【莫队+单调栈】
题目描述 给定长度为n的序列:a1,a2,...,an,记为a[1:n].类似地,a[l:r](1<=l<=r<=N)是指序列:al,al+1,...,ar-1,ar.若1<= ...
- [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)
Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...
- BZOj 4540: [Hnoi2016]序列 [莫队 st表 预处理]
4540: [Hnoi2016]序列 题意:询问区间所有子串的最小值的和 不强制在线当然上莫队啦 但是没想出来,因为不知道该维护当前区间的什么信息,维护前后缀最小值的话不好做 想到单调栈求一下,但是对 ...
- BZOJ.4826.[AHOI/HNOI2017]影魔(树状数组/莫队 单调栈)
BZOJ LOJ 洛谷 之前看\(mjt\)用莫队写了,以为是一种正解,码了3h结果在LOJ T了没A= = 心态爆炸(upd:发现是用C++11(NOI)交的,用C++11交就快一倍了...) 深刻 ...
- [BZOJ4540][HNOI2016]序列 莫队
4540: [Hnoi2016]序列 Time Limit: 20 Sec Memory Limit: 512 MB Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n ...
- 洛谷P3246 [HNOI2016]序列 [莫队]
传送门 思路 看到可离线.无修改.区间询问,相信一定可以想到莫队. 然而,莫队怎么转移是个大问题. 考虑\([l,r]\rightarrow[l,r+1]\)时答案会怎样变化?(左端点变化时同理) \ ...
随机推荐
- 项目Beta冲刺Day5
项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...
- DOM相关知识
一.查找元素 间接查找 parentNode // 父节点 childNodes // 所有子节点 firstChild // 第一个子节点 lastChild // 最后一个子节点 nextSibl ...
- hibernate.QueryException: ClassNotFoundException: org.hibernate.hql.ast.HqlToken
环境:weblogic10.3.5,hibernate3,GGTS(groovy/grails tools suite):出现这问题是因为该项目是从weblogic8.1.6下移植到weblogic1 ...
- vue style width a href动态拼接问题 ?
style width 这个问题 折磨了我一个上午了 好惭愧 因为项目涉及到 进度条 所以必须用行内样式 style 用过vue的都知道 vue中style的用法 大众用法 :style=&quo ...
- windows安装tensorflow简单直接的方法(win10+pycharm+tensorflow-gpu1.7+cuda9.1+cudnn7.1)
安装tensorflow-gpu环境需要:python环境,tensorflow-gpu包,cuda,cudnn 一,安装python,pip3直接到官网下载就好了,下载并安装你喜欢的版本 https ...
- SpringBoot项目如何进行打包部署
springboot的打包方式有很多种.有打成war的,有打成jar的,也有直接提交到github,通过jekins进行打包部署的.这里主要介绍如何打成jar进行部署.不推荐用war,因为spring ...
- 第一章 IDEA的使用
第一章 IDEA的使用 1.为什么要使用idea 最智能的IDE IDEA相对于eclipse来说最大的优点就是它比eclipse聪明.聪明到什么程度呢?我们先来看几个简单的例子. A.智能提示重 ...
- 新概念英语(1-137)A pleasant dream
Lesson 137 A pleasant dream 美好的梦 Listen to the tape then answer this question. What would Julie like ...
- LXC学习实践(1)LXC的概念和用途
1.LXC是什么? LXC是Linux containers的简称,是一种基于容器的操作系统层级的虚拟化技术,Sourceforge上有LXC这个开源项目. 2.LXC能做什么? LXC和Linux内 ...
- Spark入门(1-4)安装、运行Spark
如何安装Spark 安装和使用Spark有几种不同方式.你可以在自己的电脑上将Spark作为一个独立的框架安装或者从诸如Cloudera,HortonWorks或MapR之类的供应商处获取一个Spar ...