Sol

一个很显然的暴力,设\(f[i]\)表示选到\(i\)的最优效率

每次枚举一段不与前面连续的长度小于\(k\)的区间转移来

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k;
ll f[_], sum[_]; int main(RG int argc, RG char* argv[]){
n = Input(); k = Input();
for(RG int i = 1; i <= n; ++i) f[i] = Input(), sum[i] = sum[i - 1] + f[i];
for(RG int i = 2; i <= n; ++i)
for(RG int j = max(0, i - k); j < i; ++j)
f[i] = max(f[i], f[j - 1] + sum[i] - sum[j]);
printf("%lld\n", f[n]);
return 0;
}

把转移中的\(f[j-1]\)和\(sum[j]\)写在一起就可以单调队列优化

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e5 + 5); IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, k;
ll f[_], g[_], sum[_], Q[_], head, tail = 1; int main(RG int argc, RG char* argv[]){
n = Input(); k = Input();
for(RG int i = 1; i <= n; ++i) sum[i] = sum[i - 1] + Input();
Q[0] = -1; g[0] -= sum[1];
for(RG int i = 1; i <= n; ++i){
while(i - Q[head] - 1 > k) ++head;
f[i] = (Q[head] == -1 ? 0 : g[Q[head]]) + sum[i], g[i] = f[i] - sum[i + 1];
while(head <= tail && g[Q[tail]] < g[i]) --tail;
Q[++tail] = i;
}
printf("%lld\n", f[n]);
return 0;
}

Bzoj2442:修剪草坪的更多相关文章

  1. bzoj2442 修剪草坪——单调队列

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 设 f[i] 为答案,则有 f[i] = max { f[j] - s[j+1] } ...

  2. BZOJ2442: [Usaco2011 Open]修剪草坪

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 500  Solved: 244[Submit][ ...

  3. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  4. [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1118  Solved: 569[Submit] ...

  5. usaco 购买饲料 && 修剪草坪

    购买饲料 Description 如约翰在镇上,沿着公路开车回家,他的家离起点有E公里.他顺便准备买K吨饲料回家.运送饲料是要花油钱的,如果他的车上有X吨饲料,行驶一公里需要X^2元,行驶D公里就 需 ...

  6. BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )

    dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...

  7. BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP

    BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...

  8. P2627 修剪草坪

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  9. 洛谷 P2627 修剪草坪 题解

    P2627 修剪草坪 题目描述 在一年前赢得了小镇的最佳草坪比赛后,Farm John变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,Farm John希望能够再次夺冠. 然而,Fa ...

  10. 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP

    第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...

随机推荐

  1. 原创!!jquery简单tips和dialog

    <!------------------html代码-----------------------> <!DOCTYPE html><html><head&g ...

  2. Java导出freemarker实现下载word文档格式功能

    首先呢,先说一下制作freemarker模板步骤, 1. 在WPS上写出所要的下载的word格式当做模板 2. 把模板内不固定的内容(例:从数据库读取的信息)写成123或者好代替的文字标注 3. 把固 ...

  3. mac中配置jdk环境

  4. Eclipse搭建Maven项目之准备工作

    Maven是优秀的Java项目对象模型解决方案,意为知识的积累(意地绪文),Maven可以方便的解决Java项目包依赖问题,通过配置pom.xml引入依赖,并自动引入其他依赖. 操作系统版本:wind ...

  5. 第十八章 DjangoWeb开发框架

    第十八章 DjangoWeb开发框架 第一课 内容概要: 1.JS正则 -登录注册验证 2.组件 1.BootStrap -css -js 学习BootStrap规则 2.jQueryUI -css ...

  6. 《android开发艺术探索》读书笔记(十三)--综合技术

    接上篇<android开发艺术探索>读书笔记(十二)--Bitmap的加载和Cache No1: 使用CrashHandler来获取应用的crash信息 No2: 在Android中单个d ...

  7. HDU - 3038 种类并查集

    思路:种类并查集的每个节点应该保存它的父节点以及他和父节点之间的关系.假设root表示根结点,sum[i-1]表示i到根结点的和,那么sum[j-1] - sum[i]可以得到区间[j, i]的和.那 ...

  8. day3(while、流程控制)

    一.while 语法 white 条件: 执行代码... 小练习: #打印0-100的偶数 count = 0 while count <= 100: if count %2 == 0 : pr ...

  9. 【推荐】开源项目minapp-重新定义微信小程序的开发

    minapp 重新定义微信小程序的开发 官网:https://qiu8310.github.io/minapp/ 作者:Mora minapp 重新定义微信小程序的开发 使用 用 npm 安装命令行工 ...

  10. android/底层获取上下文对象

    public class ContextUtils { private static Context applicationContext = null; public static Context ...