[LeetCode] Factor Combinations 因子组合
Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2;
= 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
- You may assume that n is always positive.
- Factors should be greater than 1 and less than n.
Example 1:
Input:1
Output: []
Example 2:
Input:37
Output:[]
Example 3:
Input:12
Output:
[
[2, 6],
[2, 2, 3],
[3, 4]
]
Example 4:
Input:32
Output:
[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]
这道题给了我们一个正整数n,让写出所有的因子相乘的形式,而且规定了因子从小到大的顺序排列,那么对于这种需要列出所有的情况的题目,通常都是用回溯法来求解的,由于题目中说明了1和n本身不能算其因子,那么可以从2开始遍历到n,如果当前的数i可以被n整除,说明i是n的一个因子,将其存入一位数组 out 中,然后递归调用 n/i,此时不从2开始遍历,而是从i遍历到 n/i,停止的条件是当n等于1时,如果此时 out 中有因子,将这个组合存入结果 res 中,参见代码如下:
解法一:
class Solution {
public:
vector<vector<int>> getFactors(int n) {
vector<vector<int>> res;
helper(n, , {}, res);
return res;
}
void helper(int n, int start, vector<int> out, vector<vector<int>>& res) {
if (n == ) {
if (out.size() > ) res.push_back(out);
return;
}
for (int i = start; i <= n; ++i) {
if (n % i != ) continue;
out.push_back(i);
helper(n / i, i, out, res);
out.pop_back();
}
}
};
下面这种方法用了个小 trick,我们仔细观察题目中给的两个例子的结果,可以发现每个组合的第一个数字都没有超过n的平方根,这个也很好理解,由于要求序列是从小到大排列的,那么如果第一个数字大于了n的平方根,而且n本身又不算因子,那么后面那个因子也必然要与n的平方根,这样乘起来就必然会超过n,所以不会出现这种情况。那么刚开始在2到n的平方根之间进行遍历,如果遇到因子,先复制原来的一位数组 out 为一个新的一位数组 new_out,然后把此因子i加入 new_out,然后再递归调用 n/i,并且从i遍历到 n/i 的平方根,之后再把 n/i 放入 new_out,并且存入结果 res,由于层层迭代的调用,凡是本身能继续拆分成更小因数的都能在之后的迭代中拆分出来,并且加上之前结果,最终都会存 res 中,参见代码如下:
解法二:
class Solution {
public:
vector<vector<int>> getFactors(int n) {
vector<vector<int>> res;
helper(n, , {}, res);
return res;
}
void helper(int n, int start, vector<int> out, vector<vector<int>> &res) {
for (int i = start; i <= sqrt(n); ++i) {
if (n % i != ) continue;
vector<int> new_out = out;
new_out.push_back(i);
helper(n / i, i, new_out, res);
new_out.push_back(n / i);
res.push_back(new_out);
}
}
};
上面两种解法虽有些小不同,但是构成结果的顺序都是相同,对于题目中给的两个例子 n = 12 和 n = 32,结果如下:
n = n =
上面两种方法得到的结果跟题目中给的答案的顺序不同,虽然顺序不同,但是并不影响其通过 OJ。下面就给出生成题目中的顺序的解法,这种方法也不难理解,还是从2遍历到n的平方根,如果i是因子,那么递归调用n/i,结果用v来保存,然后新建一个包含i和 n/i 两个因子的序列 out,然后将其存入结果 res, 然后再遍历之前递归 n/i 的所得到的序列,如果i小于等于某个序列的第一个数字,那么将其插入该序列的首位置,然后将序列存入结果 res 中,举个例子,比 n = 12,那么刚开始 i = 2,是因子,然后对6调用递归,得到 {2, 3},然后此时将 {2, 6} 先存入结果中,然后发现i(此时为2)小于等于 {2, 3} 中的第一个数字2,那么将2插入首位置得到 {2, 2, 3} 加入结果,然后此时i变成3,还是因子,对4调用递归,得到 {2, 2},此时先把 {3, 4} 存入结果,然后发现i(此时为3)大于 {2, 2} 中的第一个数字2,不做任何处理直接返回,这样就得到正确的结果了:
解法三:
class Solution {
public:
vector<vector<int>> getFactors(int n) {
vector<vector<int>> res;
for (int i = ; i * i <= n; ++i) {
if (n % i != ) continue;
vector<vector<int>> v = getFactors(n / i);
vector<int> out{i, n / i};
res.push_back(out);
for (auto a : v) {
if (i <= a[]) {
a.insert(a.begin(), i);
res.push_back(a);
}
}
}
return res;
}
};
这种方法对于对于题目中给的两个例子 n = 12 和 n = 32,结果和题目中给的相同:
n = n =
Github 同步地址:
https://github.com/grandyang/leetcode/issues/254
类似题目:
参考资料:
https://leetcode.com/problems/factor-combinations/
https://leetcode.com/problems/factor-combinations/discuss/68039/A-simple-java-solution
https://leetcode.com/problems/factor-combinations/discuss/68040/My-Recursive-DFS-Java-Solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Factor Combinations 因子组合的更多相关文章
- [LeetCode] 254. Factor Combinations 因子组合
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- LeetCode Factor Combinations
原题链接在这里:https://leetcode.com/problems/factor-combinations/ 题目: Numbers can be regarded as product of ...
- Factor Combinations
Factor Combinations Problem: Numbers can be regarded as product of its factors. For example, 8 = 2 x ...
- [Swift]LeetCode254.因子组合 $ Factor Combinations
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- Leetcode 254. Factor Combinations
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- [leetcode]254. Factor Combinations因式组合
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- 254. Factor Combinations
题目: Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a ...
- [LeetCode] Letter Combinations of a Phone Number 电话号码的字母组合
Given a digit string, return all possible letter combinations that the number could represent. A map ...
- [Locked] Factor combinations
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
随机推荐
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- WebComponent魔法堂:深究Custom Element 之 标准构建
前言 通过<WebComponent魔法堂:深究Custom Element 之 面向痛点编程>,我们明白到其实Custom Element并不是什么新东西,我们甚至可以在IE5.5上定 ...
- 绑定一个值给radio
在ASP.NET MVC程序中,需要给一个radio list表绑定一个值. 下面是Insus.NET实现的方法: 使用foreach来循环radio每一个选项,如果值与选项的值相同,那这个选项为选中 ...
- EXCEL中多级分类汇总空白字段填充
使用场景,多级分类汇总后,在汇总的字段中显示空白,这样对我们直接取值做表带来十分不更(假像有5000条记录,1000条汇总项) 相关技术,INDIRECT函数,单元格定位功能. 在数据区域外任意一个单 ...
- 使用page object模式抓取几个主要城市的pm2.5并从小到大排序后写入txt文档
#coding=utf-8from time import sleepimport unittestfrom selenium import webdriverfrom selenium.webdri ...
- offset、client、scroll开头的属性归纳总结
HTML元素有几个offset.client.scroll开头的属性,总是让人摸不着头脑.在书中看到记下来,分享给需要的小伙伴.主要是以下几个属性: 第一组:offsetWidth,offsetHei ...
- vue.js初级入门之最基础的双向绑定操作
首先在页面引入vue.js以及其他需要用到的或者可能要用到的插件(这里我多引用了bootstrap和jquery) 引用的时候需要注意文件的路径,准备工作这样基本就完成了,下面正式开始入门. vue. ...
- 【IOS开发笔记02】学生管理系统
端到端的机会 虽然现在身处大公司,但是因为是内部创业团队,产品.native.前端.服务器端全部坐在一起开发,大家很容易做零距离交流,也因为最近内部有一个前端要转岗过来,于是手里的前端任务好像可以抛一 ...
- Cell右滑 多个编辑选项栏
简单粗暴,一看就能明白 关于右滑cell,能滑出来两个以上的选项栏,可以如下这么做,但是要注意下面的注意事项,就是关于iOS8前后的问题,注释写的很清楚了.可以直接复制到自己的代码里看的会更明白. / ...
- 前端开发--ppt展示页面跳转逻辑实现
1. 工程地址:https://github.com/digitalClass/web_page 网站发布地址: http://115.28.30.25:8029/ 2. 今天遇到一个小问题, 同组的 ...