[LeetCode] Factor Combinations 因子组合
Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2;
= 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
- You may assume that n is always positive.
- Factors should be greater than 1 and less than n.
Example 1:
Input:1
Output: []
Example 2:
Input:37
Output:[]
Example 3:
Input:12
Output:
[
[2, 6],
[2, 2, 3],
[3, 4]
]
Example 4:
Input:32
Output:
[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]
这道题给了我们一个正整数n,让写出所有的因子相乘的形式,而且规定了因子从小到大的顺序排列,那么对于这种需要列出所有的情况的题目,通常都是用回溯法来求解的,由于题目中说明了1和n本身不能算其因子,那么可以从2开始遍历到n,如果当前的数i可以被n整除,说明i是n的一个因子,将其存入一位数组 out 中,然后递归调用 n/i,此时不从2开始遍历,而是从i遍历到 n/i,停止的条件是当n等于1时,如果此时 out 中有因子,将这个组合存入结果 res 中,参见代码如下:
解法一:
class Solution {
public:
vector<vector<int>> getFactors(int n) {
vector<vector<int>> res;
helper(n, , {}, res);
return res;
}
void helper(int n, int start, vector<int> out, vector<vector<int>>& res) {
if (n == ) {
if (out.size() > ) res.push_back(out);
return;
}
for (int i = start; i <= n; ++i) {
if (n % i != ) continue;
out.push_back(i);
helper(n / i, i, out, res);
out.pop_back();
}
}
};
下面这种方法用了个小 trick,我们仔细观察题目中给的两个例子的结果,可以发现每个组合的第一个数字都没有超过n的平方根,这个也很好理解,由于要求序列是从小到大排列的,那么如果第一个数字大于了n的平方根,而且n本身又不算因子,那么后面那个因子也必然要与n的平方根,这样乘起来就必然会超过n,所以不会出现这种情况。那么刚开始在2到n的平方根之间进行遍历,如果遇到因子,先复制原来的一位数组 out 为一个新的一位数组 new_out,然后把此因子i加入 new_out,然后再递归调用 n/i,并且从i遍历到 n/i 的平方根,之后再把 n/i 放入 new_out,并且存入结果 res,由于层层迭代的调用,凡是本身能继续拆分成更小因数的都能在之后的迭代中拆分出来,并且加上之前结果,最终都会存 res 中,参见代码如下:
解法二:
class Solution {
public:
vector<vector<int>> getFactors(int n) {
vector<vector<int>> res;
helper(n, , {}, res);
return res;
}
void helper(int n, int start, vector<int> out, vector<vector<int>> &res) {
for (int i = start; i <= sqrt(n); ++i) {
if (n % i != ) continue;
vector<int> new_out = out;
new_out.push_back(i);
helper(n / i, i, new_out, res);
new_out.push_back(n / i);
res.push_back(new_out);
}
}
};
上面两种解法虽有些小不同,但是构成结果的顺序都是相同,对于题目中给的两个例子 n = 12 和 n = 32,结果如下:
n = n =
上面两种方法得到的结果跟题目中给的答案的顺序不同,虽然顺序不同,但是并不影响其通过 OJ。下面就给出生成题目中的顺序的解法,这种方法也不难理解,还是从2遍历到n的平方根,如果i是因子,那么递归调用n/i,结果用v来保存,然后新建一个包含i和 n/i 两个因子的序列 out,然后将其存入结果 res, 然后再遍历之前递归 n/i 的所得到的序列,如果i小于等于某个序列的第一个数字,那么将其插入该序列的首位置,然后将序列存入结果 res 中,举个例子,比 n = 12,那么刚开始 i = 2,是因子,然后对6调用递归,得到 {2, 3},然后此时将 {2, 6} 先存入结果中,然后发现i(此时为2)小于等于 {2, 3} 中的第一个数字2,那么将2插入首位置得到 {2, 2, 3} 加入结果,然后此时i变成3,还是因子,对4调用递归,得到 {2, 2},此时先把 {3, 4} 存入结果,然后发现i(此时为3)大于 {2, 2} 中的第一个数字2,不做任何处理直接返回,这样就得到正确的结果了:
解法三:
class Solution {
public:
vector<vector<int>> getFactors(int n) {
vector<vector<int>> res;
for (int i = ; i * i <= n; ++i) {
if (n % i != ) continue;
vector<vector<int>> v = getFactors(n / i);
vector<int> out{i, n / i};
res.push_back(out);
for (auto a : v) {
if (i <= a[]) {
a.insert(a.begin(), i);
res.push_back(a);
}
}
}
return res;
}
};
这种方法对于对于题目中给的两个例子 n = 12 和 n = 32,结果和题目中给的相同:
n = n =
Github 同步地址:
https://github.com/grandyang/leetcode/issues/254
类似题目:
参考资料:
https://leetcode.com/problems/factor-combinations/
https://leetcode.com/problems/factor-combinations/discuss/68039/A-simple-java-solution
https://leetcode.com/problems/factor-combinations/discuss/68040/My-Recursive-DFS-Java-Solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Factor Combinations 因子组合的更多相关文章
- [LeetCode] 254. Factor Combinations 因子组合
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- LeetCode Factor Combinations
原题链接在这里:https://leetcode.com/problems/factor-combinations/ 题目: Numbers can be regarded as product of ...
- Factor Combinations
Factor Combinations Problem: Numbers can be regarded as product of its factors. For example, 8 = 2 x ...
- [Swift]LeetCode254.因子组合 $ Factor Combinations
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- Leetcode 254. Factor Combinations
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- [leetcode]254. Factor Combinations因式组合
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
- 254. Factor Combinations
题目: Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a ...
- [LeetCode] Letter Combinations of a Phone Number 电话号码的字母组合
Given a digit string, return all possible letter combinations that the number could represent. A map ...
- [Locked] Factor combinations
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a func ...
随机推荐
- SpringMVC一路总结(三)
在博文<SpringMVC一路总结(一)>和<SpringMVC一路总结(二)>中,该框架的应用案例都是是基于xml的形式实现的.然而,对于大型项目而言,这种xml的配置会增加 ...
- 10.JAVA之GUI编程弹出对话框Dialog
在上节基础上添加对话框显示错误信息. 代码如下: /*弹出对话框显示错误信息,对话框一般不单独出现,一般依赖于窗体.*/ /*练习-列出指定目录内容*/ import java.awt.Button; ...
- 微信小程序(微信应用号)开发ide安装解决方法
这两天整个技术圈都炸锅了,微信小程序(微信应用号)发布内测,首批200家收到邀请,但是没受邀请的同学,也不用担心,下面介绍一下解决方法. 首先需要下载ide,昨天只需要下载0.9版本的编辑器并替换文件 ...
- CSS常见居中讨论
先来一个常见的案例,把一张图片和下方文字进行居中: 首先处理左右居中,考虑到img是一个行内元素,下方的文字内容也是行内元素,因此直接用text-align即可: <style> .con ...
- 设计模式(十)组合模式(Composite Pattern)
一.引言 在软件开发过程中,我们经常会遇到处理简单对象和复合对象的情况,例如对操作系统中目录的处理就是这样的一个例子,因为目录可以包括单独的文件,也可以包括文件夹,文件夹又是由文件组成的,由于简单对象 ...
- C# - 多线程 之 异步编程
异步编程 同步编程,请求响应模型,同步化.顺序化.事务化. 异步编程,事件驱动模型,以 Fire and Forget 方式实现. 异步编程模式 -§- 异步编程模型 (APM) 模式: IAsyn ...
- 【C#公共帮助类】WinRarHelper帮助类,实现文件或文件夹压缩和解压,实战干货
关于本文档的说明 本文档使用WinRAR方式来进行简单的压缩和解压动作,纯干货,实际项目这种压缩方式用的少一点,一般我会使用第三方的压缩dll来实现,就如同我上一个压缩类博客,压缩的是zip文件htt ...
- shiro的使用1 简单的认证
最近在重构,有空学了一个简单的安全框架shiro,资料比较少,在百度和google上能搜到的中文我看过了,剩下的时间有空会研究下官网的文章和查看下源码, 简单的分享一些学习过程: 1,简单的一些概念上 ...
- java.lang.Class.isPrimitive()用法解析
一.概述: 此方法主要用来判断Class是否为原始类型(boolean.char.byte.short.int.long.float.double). 二.格式: Class.isPrimitive( ...
- javascript浏览器检测
<script type="text/javascript"> /** * 获取浏览器类型以及版本号 * 支持国产浏览器:猎豹浏览器.搜狗浏览器.傲游浏览器.3 ...