[HNOI 2018]排列
Description
给定 \(n\) 个整数 \(a_1, a_2, \dots, a_n, 0 \le a_i \le n\) ,以及 \(n\) 个整数 \(w_1, w_2, \dots, w_n\) 。称 \(a_1, a_2, \dots, a_n\) 的 一个排列 \(a_{p[1]}, a_{p[2]}, \dots, a_{p[n]}\) 为 \(a_1, a_2, \dots, a_n\) 的一个合法排列,当且仅当该排列满足:对于任意的 \(k\) 和任意的 \(j\) ,如果 \(p[k]\) 等于 \(a_{p[j]}\) ,那么 \(k<j\) 。定义这个合法排列的权值为 \(w_{p[1]} + 2w_{p[2]} + \dots + nw_{p[n]}\) 。
求出在所有合法排列中的最大权值。如果不存在合法排列,输出 \(-1\) 。
\(1\leq n\leq 500000,0\leq a_i\leq n,1\leq w_i\leq 10^9\) ,\(\sum w_i\leq 1.5\times 10^{13}\)
Solution
假如我们对于所有的 \(i\) , \(a[i]\) 和 \(i\) 间建一条边,显然这副图可能构成了一棵树。
如果不存在合法排列,当前仅当构成的图非树。
如何构成了树,那么原题的模型就变成了:给出一棵以 \(0\) 为根的有根树,需要为非 \(0\) 顶点标号 \(1\sim n\) ,并且满足父亲比自己先标号。每个节点有点权,树的价值为点权乘标号的和。求树最大的价值。
一个显然的贪心是如果当前树中权值最小的点 \(u\) 没有父亲,那么我们当前一定是选 \(u\) 。
不过大部分不是这种情况。
考虑如果 \(u\) 有父亲,显然当他的父亲被选之后马上就会选 \(u\) ,也就是说父子间的编号一定是相邻的。我们可以将 \(u\) 的答案并在他的父亲中。
同样的,对于两个不同的“块”,也是如此。
考虑一个长度为 \(l_1\) 的序列 \(A\) 和一个长度为 \(l_2\) 的序列 \(B\) ,
序列前面已经安排好了 \(loc\) 个。考虑 \(AB\) 和 \(BA\) 两种合并后的序列的答案:
\[W_{AB}=\sum_{i=1}^{l_1}(i+loc)w_{A_i}+\sum_{i=1}^{l_2}(i+loc+l_1)w_{B_i}\]
\[W_{BA}=\sum_{i=1}^{l_2}(i+loc)w_{B_i}+\sum_{i=1}^{l_1}(i+loc+l_2)w_{A_i}\]
如果 \(W_{AB}> W_{BA}\Rightarrow \frac{\sum_{i=1}^{l_1}w_{A_i}}{l_1}<\frac{\sum_{i=1}^{l_2}w_{B_i}}{l_2}\)
也就是平均权值小的放前面答案会更优。
那么我们就可以用堆来维护这个东西。
不知道为什么写了个支持删除的堆只有 50 ,然而不删去而在取出堆顶时判断是否合法就对了...
Code
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 500000+5;
int n, a[N], fa[N], sz[N]; ll w[N];
struct node {
int id; ll son, mom;
node (int _id = 0, ll _son = 0, ll _mom = 0) {id = _id, son = _son; mom = _mom; }
bool operator < (const node &b) const {return son*b.mom > b.son*mom; }
};
priority_queue<node>Q;
int find(int o) {return ~fa[o] ? fa[o] = find(fa[o]) : o; }
void work() {
memset(fa, -1, sizeof(fa));
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
if (find(a[i])^find(i)) fa[find(a[i])] = find(i);
else {puts("-1"); return; }
}
long long ans = 0; int loc = 0;
for (int i = 1; i <= n; i++) {
scanf("%lld", &w[i]); Q.push(node(i, w[i], 1));
sz[i] = 1; ans += w[i];
}
memset(fa, -1, sizeof(fa));
while (!Q.empty()) {
node t = Q.top(); Q.pop();
if (sz[t.id] != t.mom) continue;
if (find(a[t.id]) == 0) {
ans += w[t.id]*loc; fa[t.id] = 0; loc += sz[t.id];
}else {
int tmp = find(a[t.id]);
ans += w[t.id]*sz[tmp], fa[t.id] = tmp;
w[tmp] += w[t.id], sz[tmp] += sz[t.id];
Q.push(node(tmp, w[tmp], sz[tmp]));
}
}
printf("%lld\n", ans);
}
int main() {work(); return 0; }
[HNOI 2018]排列的更多相关文章
- 【LG4437】[HNOI/AHOI2018]排列
[LG4437][HNOI/AHOI2018]排列 题面 洛谷 题解 题面里这个毒瘤的东西我们转化一下: 对于\(\forall k,j\),若\(p_k=a_{p_j}\),则\(k<j\). ...
- 【HNOI 2018】排列
Problem Description 给定 \(n\) 个整数 \(a_1, a_2, \ldots , a_n(0 \le a_i \le n)\),以及 \(n\) 个整数 \(w_1, w_2 ...
- HNOI 2018 简要题解
寻宝游戏 毒瘤题. 估计考试只会前30pts30pts30pts暴力然后果断走人. 正解是考虑到一个数&1\&1&1和∣0|0∣0都没有变化,&0\&0& ...
- [HNOI/AHOI2018]排列 贪心
题面 题解: 把题面的限制换成中文: 如果排在第k位的下标 = 排在第j位的值 ,那么k < j 换一个描述方式: 一个值为x的数要排在第x个数后面. 再换一个描述方式: \(fa[i] = a ...
- [HNOI/AHOI2018]排列
[Luogu4437] 如果\(a[i]=j\)则序列\(p[]\)中\(j\)必须排在\(i\)前面,如果\(j\)不在范围内则不管,求一个式子\(\sum_{i=1}^n iw_{p[i]}\)的 ...
- 洛谷 P4437 [HNOI/AHOI2018]排列(贪心+堆,思维题)
题面传送门 开始 WA ycx 的遗产(bushi 首先可以将题目转化为图论模型:\(\forall i\) 连边 \(a_i\to i\),然后求图的一个拓扑序 \(b_1,b_2,\dots b_ ...
- [HNOI 2018]道路
Description 题库链接 给出一棵含有 \(n\) 个叶子节点的二叉树,对于每个非叶子节点的节点,其与左儿子相连的边为公路,其与右儿子相连的边为铁路.对于每个节点,选择一条与其儿子相连的铁路或 ...
- [HNOI 2018]游戏
Description 题库链接 有 \(n\) 个房间排成一列,编号为 \(1,2,...,n\) ,相邻的房间之间都有一道门.其中 \(m\) 个门上锁,其余的门都能直接打开.现在已知每把锁的钥匙 ...
- 【HNOI 2018】毒瘤
Problem Description 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的数据结构题:给出一个数组,要求支持若干种奇奇怪怪的修改操作(例如给一个区间内的数同时加上 \(c ...
随机推荐
- Struts2学习笔记一 简介及入门程序
Struts2是一个基于MVC设计模式的web应用框架,它本质上相当于一个Sevlet.是Struts1的下一代产品,是在structs1和WebWork技术的基础上进行合并后的全新框架(WebWor ...
- choose the max from numbers, use scanf and if else (v1:21.9.2017,v2:23.9.2017)
#include<stdio.h> int main(){ int a,b,c,max; printf("请输入一个数值: "); scanf("%d&quo ...
- scrapy 模拟登陆
import scrapy import urllib.request from scrapy.http import Request,FormRequest class LoginspdSpider ...
- Java语言基础组成
写完才发现,这个博客不提供目录这个功能,真是想骂爹了...... 目录 关键字 标识符 注释 常量和变量 运算符 语句 函数 数组 1.关键字 描述:刚刚开始学这个的时候,真是傻傻分不清楚,不过没关系 ...
- Hibernate之深入Hibernate的映射文件
这周周末 要把hibernate的映射文件搞定 .. 1.映射文件的主结构 主要结构 :根元素为<hibernate-mapping ></hibernate-mapping> ...
- Android webview Mixed Content无法显示图片解决
转自:http://blog.csdn.net/crazy_zihao/article/details/51557425 前言 在使用WebView加载https资源文件时,如果认证证书不被Andro ...
- (原创)带模板的OLE输出EXCEL
其实带模板的OLE输出EXCEL就是将要输出的EXCEL中一些拥有固定值(如标题,表头行等)的单元格先填充好数据和设置好格式后作为模板上传到SAP 中.这样后续在输出EXCEL时只需从SAP中将模板下 ...
- Python内置函数(54)——callable
英文文档: callable(object) Return True if the object argument appears callable, False if not. If this re ...
- python 单例模式的四种创建方式
单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...
- hadoop2.6.0实践:A02 问题处理 util.NativeCodeLoader: Unable to load native-hadoop library for your platform
############################################################# hadoop "util.NativeCodeLoader: Un ...