Description

你有n种牌,第i种牌的数目为ci。另外有一种特殊的 牌:joker,它的数目是m。你可以用每种牌各一张来组成一套牌,也可以用一张joker和除了某一种牌以外的其他牌各一张组成1套牌。比如,当n=3 时,一共有4种合法的套牌:{1,2,3}, {J,2,3}, {1,J,3}, {1,2,J}。 给出n, m和ci,你的任务是组成尽量多的套牌。每张牌最多只能用在一副套牌里(可以有牌不使用)。

Input

第一行包含两个整数n, m,即牌的种数和joker的个数。第二行包含n个整数ci,即每种牌的张数。

Output

输出仅一个整数,即最多组成的套牌数目。

Sample Input

3 4
1 2 3

Sample Output

3

HINT

样例解释
输入数据表明:一共有1个1,2个2,3个3,4个joker。最多可以组成三副套牌:{1,J,3}, {J,2,3}, {J,2,3},joker还剩一个,其余牌全部用完。

数据范围
50%的数据满足:2 < = n < = 5, 0 < = m < = 10^ 6, 0< = ci < = 200
100%的数据满足:2 < = n < = 50, 0 < = m, ci < = 500,000,000。

题解

看错两次题...

二分一下几副牌,然后要加的 $joker$ 数量 $\sum_{i = 1} ^n max(mid−c[i], 0)$

由抽屉原理, $joker$ 不能超过 $mid$ 张,所以加的 $joker$ 最多 $min(m,mid)$ 个。判断一下

 //It is made by Awson on 2017.10.9
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define sqr(x) ((x)*(x))
using namespace std; LL n, m;
LL c[]; bool judge(LL mid) {
LL tol = ;
for (LL i = ; i <= n; i++)
if (c[i] < mid) tol += mid-c[i];
return tol <= min(m, mid);
}
void work() {
scanf("%lld%lld", &n, &m);
for (LL i = ; i <= n; i++)
scanf("%lld", &c[i]);
LL L = , R = 2e10, ans = ;
while (L <= R) {
LL mid = (L+R)>>;
if (judge(mid)) ans = mid, L = mid+;
else R = mid-;
}
printf("%lld\n", ans);
}
int main() {
work();
return ;
}

[CQOI 2010]扑克牌的更多相关文章

  1. bzoj 1818 [CQOI 2010] 内部白点 - 扫描线 - 树状数组

    题目传送门 快速的列车 慢速的列车 题目大意 一个无限大的方格图内有$n$个黑点.问有多少个位置上下左右至少有一个黑点或本来是黑点. 扫描线是显然的. 考虑一下横着的线段,取它两个端点,横坐标小的地方 ...

  2. 如何使用本地账户"完整"安装 SharePoint Server 2010+解决“New-SPConfigurationDatabase : 无法连接到 SharePoint_Config 的 SQL Server 的数据 库 master。此数据库可能不存在,或当前用户没有连接权限。”

    注:目前看到的解决本地账户完整安装SharePoint Server 2010的解决方案如下,但是,有但是的哦: 当我们选择了"完整"模式安装SharePointServer201 ...

  3. How to accept Track changes in Microsoft Word 2010?

    "Track changes" is wonderful and remarkable tool of Microsoft Word 2010. The feature allow ...

  4. [入门级] 基于 visual studio 2010 mvc4 的图书管理系统开发初步 (二)

    [入门级] 基于 visual studio 2010 mvc4 的图书管理系统开发初步 (二) Date  周六 10 一月 2015 By 钟谢伟 Category website develop ...

  5. [入门级] visual studio 2010 mvc4开发,用ibatis作为数据库访问媒介(一)

    [入门级] visual studio 2010 mvc4开发,用ibatis作为数据库访问媒介(一) Date  周二 06 一月 2015 By 钟谢伟 Tags mvc4 / asp.net 示 ...

  6. c++ builder 2010 错误 F1004 Internal compiler error at 0x9740d99 with base 0x9

    今天遇到一个奇怪的问题,拷贝项目后,在修改,会出现F1004 Internal compiler error at 0x9740d99 with base 0x9 ,不管怎么改,删除改动,都没用,关闭 ...

  7. Sharepoint 2010、Sharepoint 2013浏览器打开CAD(.dwg)

    客户端配置 1.安装FreeDWGViewer.exe,设置浏览器查看 2.检查ActiveX插件是否已安装成功 服务端配置 1.开启许可模式或者通过脚本将"application/acad ...

  8. Microsoft Windows* SDK May 2010 或较新版本(兼容 2010 年 6 月 DirectX SDK)GPU Detect

    原文链接 下载代码样本 特性/描述 日期: 2016 年 5 月 5 日 GPU Detect 是一种简短的示例,演示了检测系统中主要显卡硬件(包括第六代智能英特尔® 酷睿™ 处理器产品家族)的方式. ...

  9. SCNU 2015ACM新生赛初赛【1007. ZLM的扑克牌】解题报告

            题目链接详见SCNU 2015新生网络赛 1007. ZLM的扑克牌 .         其实我在想这题的时候,还想过要不要设置求最小的排列,并且对于回文数字的话,可以把扑克牌折起来( ...

随机推荐

  1. web服务器学习4---httpd-2.4.29优化

    实验环境: 环境:CentOS 7.4 软件版本:httpd-2.4.29 一.网页压缩 1.检查是否安装压缩模块 apachectl -D DUMP_MODULES | grep deflate 如 ...

  2. JDK1.8源码(六)——java.util.LinkedList 类

    上一篇博客我们介绍了List集合的一种典型实现 ArrayList,我们知道 ArrayList 是由数组构成的,本篇博客我们介绍 List 集合的另一种典型实现 LinkedList,这是一个有链表 ...

  3. 学号:201621123032 《Java程序设计》第1周学习总结

    1:本周学习总结 JDK,JRE,JVM三者的含义和关系.JDK是java开发工具包,包含了java的运行环境,java工具和类文库.例如java.javac.jar....可以把 .java编译成. ...

  4. HTML5文件操作API

    HTML5文件操作API       一.文件操作API 在之前我们操作本地文件都是使用flash.silverlight或者第三方的activeX插件等技术,由于使用了这些技术后就很难进行跨平台.或 ...

  5. 【iOS】Swift if let 和 if var

    if let unwrappedOptional = postDict { print("The optional has a value! It's \(unwrappedOptional ...

  6. codves 3044 矩形面积求并

    codves  3044 矩形面积求并  题目等级 : 钻石 Diamond 题目描述 Description 输入n个矩形,求他们总共占地面积(也就是求一下面积的并) 输入描述 Input Desc ...

  7. MariaDB/MySQL存储过程和函数

    本文目录:1.创建存储过程.函数 1.1 存储过程的IN.OUT和INOUT2.修改和删除存储过程.函数3.查看存储过程.函数信息 在MySQL/MariaDB中,存储过程(stored proced ...

  8. [笔试题目]使用Stringbuffer无 参的构造函数创建 一个对象时,默认的初始容量是多少? 如果长度不够使用了,自动增长多少倍?

    [笔试题目] 使用Stringbuffer无 参的构造函数创建 一个对象时,默认的初始容量是多少? 如果长度不够使用了,自动增长多少倍? StringBuffer 底层是依赖了一个字符数组才能存储字符 ...

  9. js解决IE8不支持html5,css3的问题(respond.js 的使用注意)

    IE8.0及以下不支持html5,css3的解析.目前为止IE8以下的版本使用率在10%左右,网站还是有必要兼容的. 1,在你的所有css最后判断引入两个js文件. html5.js  是用来让ie8 ...

  10. Spring Security 入门(1-5)Spring Security - 匿名认证

    匿名认证 对于匿名访问的用户,Spring Security 支持为其建立一个匿名的 AnonymousAuthenticationToken 存放在 SecurityContextHolder 中, ...