Given a binary tree, determine if it is a valid binary search tree (BST).

Assume a BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

Input:
2
/ \
1 3
Output: true

Example 2:

    5
/ \
1 4
  / \
  3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value
  is 5 but its right child's value is 4.

这道验证二叉搜索树有很多种解法,可以利用它本身的性质来做,即左<根<右,也可以通过利用中序遍历结果为有序数列来做,下面我们先来看最简单的一种,就是利用其本身性质来做,初始化时带入系统最大值和最小值,在递归过程中换成它们自己的节点值,用long代替int就是为了包括int的边界条件,代码如下:

C++ 解法一:

// Recursion without inorder traversal
class Solution {
public:
bool isValidBST(TreeNode* root) {
return isValidBST(root, LONG_MIN, LONG_MAX);
}
bool isValidBST(TreeNode* root, long mn, long mx) {
if (!root) return true;
if (root->val <= mn || root->val >= mx) return false;
return isValidBST(root->left, mn, root->val) && isValidBST(root->right, root->val, mx);
}
};

Java 解法一:

public class Solution {
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
return valid(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean valid(TreeNode root, long low, long high) {
if (root == null) return true;
if (root.val <= low || root.val >= high) return false;
return valid(root.left, low, root.val) && valid(root.right, root.val, high);
}
}

这题实际上简化了难度,因为有的时候题目中的二叉搜索树会定义为左<=根<右,而这道题设定为一般情况左<根<右,那么就可以用中序遍历来做。因为如果不去掉左=根这个条件的话,那么下边两个数用中序遍历无法区分:

20       20
   /           \
 20           20

它们的中序遍历结果都一样,但是左边的是 BST,右边的不是 BST。去掉等号的条件则相当于去掉了这种限制条件。下面来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的,代码如下:

C++ 解法二:

// Recursion
class Solution {
public:
bool isValidBST(TreeNode* root) {
if (!root) return true;
vector<int> vals;
inorder(root, vals);
for (int i = ; i < vals.size() - ; ++i) {
if (vals[i] >= vals[i + ]) return false;
}
return true;
}
void inorder(TreeNode* root, vector<int>& vals) {
if (!root) return;
inorder(root->left, vals);
vals.push_back(root->val);
inorder(root->right, vals);
}
};

Java 解法二:

public class Solution {
public boolean isValidBST(TreeNode root) {
List<Integer> list = new ArrayList<Integer>();
inorder(root, list);
for (int i = 0; i < list.size() - 1; ++i) {
if (list.get(i) >= list.get(i + 1)) return false;
}
return true;
}
public void inorder(TreeNode node, List<Integer> list) {
if (node == null) return;
inorder(node.left, list);
list.add(node.val);
inorder(node.right, list);
}
}

下面这种解法跟上面那个很类似,都是用递归的中序遍历,但不同之处是不将遍历结果存入一个数组遍历完成再比较,而是每当遍历到一个新节点时和其上一个节点比较,如果不大于上一个节点那么则返回 false,全部遍历完成后返回 true。代码如下:

C++ 解法三:

class Solution {
public:
bool isValidBST(TreeNode* root) {
TreeNode *pre = NULL;
return inorder(root, pre);
}
bool inorder(TreeNode* node, TreeNode*& pre) {
if (!node) return true;
bool res = inorder(node->left, pre);
if (!res) return false;
if (pre) {
if (node->val <= pre->val) return false;
}
pre = node;
return inorder(node->right, pre);
}
};

当然这道题也可以用非递归来做,需要用到栈,因为中序遍历可以非递归来实现,所以只要在其上面稍加改动便可,代码如下:

C++ 解法四:

class Solution {
public:
bool isValidBST(TreeNode* root) {
stack<TreeNode*> s;
TreeNode *p = root, *pre = NULL;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
if (pre && p->val <= pre->val) return false;
pre = p;
p = p->right;
}
return true;
}
};

Java 解法四:

public class Solution {
public boolean isValidBST(TreeNode root) {
Stack<TreeNode> s = new Stack<TreeNode>();
TreeNode p = root, pre = null;
while (p != null || !s.empty()) {
while (p != null) {
s.push(p);
p = p.left;
}
p = s.pop();
if (pre != null && p.val <= pre.val) return false;
pre = p;
p = p.right;
}
return true;
}
}

最后还有一种方法,由于中序遍历还有非递归且无栈的实现方法,称之为 Morris 遍历,可以参考博主之前的博客 Binary Tree Inorder Traversal,这种实现方法虽然写起来比递归版本要复杂的多,但是好处在于是 O(1) 空间复杂度,参见代码如下:

C++ 解法五:

class Solution {
public:
bool isValidBST(TreeNode *root) {
if (!root) return true;
TreeNode *cur = root, *pre, *parent = NULL;
bool res = true;
while (cur) {
if (!cur->left) {
if (parent && parent->val >= cur->val) res = false;
parent = cur;
cur = cur->right;
} else {
pre = cur->left;
while (pre->right && pre->right != cur) pre = pre->right;
if (!pre->right) {
pre->right = cur;
cur = cur->left;
} else {
pre->right = NULL;
if (parent->val >= cur->val) res = false;
parent = cur;
cur = cur->right;
}
}
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/98

类似题目:

Binary Tree Inorder Traversal

Find Mode in Binary Search Tree

参考资料:

https://leetcode.com/problems/validate-binary-search-tree/

https://leetcode.com/problems/validate-binary-search-tree/discuss/32101/My-java-inorder-iteration-solution

https://leetcode.com/problems/validate-binary-search-tree/discuss/32109/My-simple-Java-solution-in-3-lines

https://leetcode.com/problems/validate-binary-search-tree/discuss/32112/Learn-one-iterative-inorder-traversal-apply-it-to-multiple-tree-questions-(Java-Solution)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Validate Binary Search Tree 验证二叉搜索树的更多相关文章

  1. [CareerCup] 4.5 Validate Binary Search Tree 验证二叉搜索树

    4.5 Implement a function to check if a binary tree is a binary search tree. LeetCode上的原题,请参见我之前的博客Va ...

  2. [LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  3. [leetcode]98. Validate Binary Search Tree验证二叉搜索树

    Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as ...

  4. 098 Validate Binary Search Tree 验证二叉搜索树

    给定一个二叉树,判断其是否是一个有效的二叉搜索树.一个二叉搜索树有如下定义:    左子树只包含小于当前节点的数.    右子树只包含大于当前节点的数.    所有子树自身必须也是二叉搜索树.示例 1 ...

  5. Leetcode98. Validate Binary Search Tree验证二叉搜索树

    给定一个二叉树,判断其是否是一个有效的二叉搜索树. 假设一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也是二叉搜索 ...

  6. [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  7. [LeetCode] 255. Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  8. [LeetCode] Recover Binary Search Tree 复原二叉搜索树

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

  9. [Leetcode] Recover binary search tree 恢复二叉搜索树

    Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing ...

随机推荐

  1. DotNet生成随机数的一些方法

    在项目开发中,一般都会使用到“随机数”,但是在DotNet中的随机数并非真正的随机数,可在一些情况下生成重复的数字,现在总结一下在项目中生成随机数的方法. 1.随机布尔值: /// <summa ...

  2. ASP.NET Core 中文文档 第二章 指南(5) 在 Nano Server 上运行ASP.NET Core

    原文 ASP.NET Core on Nano Server 作者 Sourabh Shirhatti 翻译 娄宇(Lyrics) 校对 刘怡(AlexLEWIS).许登洋(Seay).谢炀(kile ...

  3. External Configuration Store Pattern 外部配置存储模式

    Move configuration information out of the application deployment package to a centralized location. ...

  4. javascript编程杂记

    1.数组深复制 var obj =[1,2,4]: var obj2 = obj.slice(0);

  5. 【QuickHit项目实例】

    关于java面向对象QuickHit项目实例 Game类:用来得到随机出现的字符串(随机打印的字符串,然后玩家进行输入字符串) public class Game { private String s ...

  6. JSTL标签 参考手册

    前言 ========================================================================= JSTL标签库,是日常开发经常使用的,也是众多 ...

  7. shiro的使用2 灵活使用shiro的密码服务模块

    shiro最闪亮的四大特征是认证,授权,加密,会话管理. 上一篇已经演示了如何使用shiro的授权模块,有了shiro这个利器,可以以统一的编码方式对用户的登入,登出,认证进行管理,相当的优雅. 为了 ...

  8. [dedecms]后台不显示验证码

    原因:某个加载文件的开始处有一个标点,去掉就可显示 // 文件地址 /include/vdimgck.php @session_start(); $_SESSION['securimage_code_ ...

  9. HTML5笔记1——HTML5的发展史及标签的改变

    记得第一次接触HTML5还是在<联信永益>实习那会儿(2011),当时一个项目技术选型的时候面临两种选择,分别是Silverlight和HTML5,那是用的最新的IE浏览器版本还是IE9, ...

  10. Java之多态(一)

    package test05; public class DuoTai_Test { /** * 一个对象,多种形态 * WQQ → Student.Worker.Friend 1).一个对象,多种形 ...