Background

Bin packing, or the placement of objects of certain weights into different bins subject to certain constraints, is an historically interesting problem. Some bin packing problems are NP-complete but are amenable
to dynamic programming solutions or to approximately optimal heuristic solutions.

In this problem you will be solving a bin packing problem that deals with recycling glass.

The Problem

Recycling glass requires that the glass be separated by color into one of three categories: brown glass, green glass, and clear glass. In this problem you will be given three recycling bins, each containing a specified
number of brown, green and clear bottles. In order to be recycled, the bottles will need to be moved so that each bin contains bottles of only one color.

The problem is to minimize the number of bottles that are moved. You may assume that the only problem is to minimize the number of movements between boxes.

For the purposes of this problem, each bin has infinite capacity and the only constraint is moving the bottles so that each bin contains bottles of a single color. The total number of bottles will never exceed 2^31.

The Input

The input consists of a series of lines with each line containing 9 integers. The first three integers on a line represent the number of brown, green, and clear bottles (respectively) in bin number 1, the second
three represent the number of brown, green and clear bottles (respectively) in bin number 2, and the last three integers represent the number of brown, green, and clear bottles (respectively) in bin number 3. For example, the line 10 15 20 30 12 8 15 8 31

indicates that there are 20 clear bottles in bin 1, 12 green bottles in bin 2, and 15 brown bottles in bin 3.

Integers on a line will be separated by one or more spaces. Your program should process all lines in the input file.

The Output

For each line of input there will be one line of output indicating what color bottles go in what bin to minimize the number of bottle movements. You should also print the minimum number of bottle movements.

The output should consist of a string of the three upper case characters 'G', 'B', 'C' (representing the colors green, brown, and clear) representing the color associated with each bin.

The first character of the string represents the color associated with the first bin, the second character of the string represents the color associated with the second bin, and the third character represents the
color associated with the third bin.

The integer indicating the minimum number of bottle movements should follow the string.

If more than one order of brown, green, and clear bins yields the minimum number of movements then the alphabetically first string representing a minimal configuration should be printed.

Sample Input

1 2 3 4 5 6 7 8 9
5 10 5 20 10 5 10 20 10

Sample Output

BCG 30
CBG 50

没看出动态规划,直接枚举了六种情况,找出最小的即可,注意当结果相同的时候,需要输出字典序最小的,所以输入的时候需要做个小处理。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>

using namespace std;

const int maxn = 3;
int bottles[maxn][maxn];
int ans, ri, rj, rk;

void init()
{
	// 输入的时候注意,为了按字母顺序输出,所以这里的存储顺序有所改变
	cin >> bottles[0][2] >> bottles[0][1];
	cin >> bottles[1][0] >> bottles[1][2] >> bottles[1][1];
	cin >> bottles[2][0] >> bottles[2][2] >> bottles[2][1];
}

void solve()
{
	ans = 1 << 31 - 1;
	for (int i = 0; i < maxn; i++) {
		for (int j = 0; j < maxn; j++) {
			if (i != j) {
				int k = 3 - i - j;
				int total = 0;
				for (int m = 0; m < maxn; m++) {
					if (i != m) {
						total += bottles[0][m];
					}
					if (j != m) {
						total += bottles[1][m];
					}
					if (k != m) {
						total += bottles[2][m];
					}
				}
				if (total < ans) {
					ans = total;
					ri = i;
					rj = j;
					rk = k;
				}
			}
		}
	}
	cout << (ri == 0 ? 'B' : ((ri == 1) ? 'C' : 'G'));
	cout << (rj == 0 ? 'B' : ((rj == 1) ? 'C' : 'G'));
	cout << (rk == 0 ? 'B' : ((rk == 1) ? 'C' : 'G'));
	cout << ' ' << ans << endl;
}

int main()
{
	ios::sync_with_stdio(false);
	while (cin >> bottles[0][0]) {
		init();
		solve();
	}

	return 0;
}

UVa - 102 - Ecological Bin Packing的更多相关文章

  1. UVa 102 - Ecological Bin Packing(规律,统计)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  2. UVa 1149 (贪心) Bin Packing

    首先对物品按重量从小到大排序排序. 因为每个背包最多装两个物品,所以直觉上是最轻的和最重的放一起最节省空间. 考虑最轻的物品i和最重的物品j,如果ij可以放在一个包里那就放在一起. 否则的话,j只能自 ...

  3. 【习题 8-1 UVA - 1149】Bin Packing

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 每个背包只能装两个东西. 而且每个东西都要被装进去. 那么我们随意考虑某个物品.(不必要求顺序 这个物品肯定要放进某个背包里面的. ...

  4. Bin Packing

    Bin Packing 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=85904#problem/F 题目: A set of  ...

  5. Vector Bin Packing 华为讲座笔记

    Vector bin packing:first fit / best fit / grasp 成本:性价比 (先验) 设计评价函数: evaluation function:cosine simil ...

  6. UVA 1149 Bin Packing

    传送门 A set of n 1-dimensional items have to be packed in identical bins. All bins have exactly the sa ...

  7. UVA 1149 Bin Packing 二分+贪心

    A set of n 1-dimensional items have to be packed in identical bins. All bins have exactly the samele ...

  8. UVa 1149 Bin Packing 【贪心】

    题意:给定n个物品的重量l[i],背包的容量为w,同时要求每个背包最多装两个物品,求至少要多少个背包才能装下所有的物品 和之前做的独木舟上的旅行一样,注意一下格式就好了 #include<ios ...

  9. uva 1149:Bin Packing(贪心)

    题意:给定N物品的重量,背包容量M,一个背包最多放两个东西.问至少多少个背包. 思路:贪心,最大的和最小的放.如果这样都不行,那最大的一定孤独终生.否则,相伴而行. 代码: #include < ...

随机推荐

  1. miracl去除某些特殊信息

    只需要在mirdef.h中增加定义 #define MR_STRIPPED_DOWN  即可在编译的时候,去掉错误信息 #define MIRACL 32 #define MR_LITTLE_ENDI ...

  2. ReactNative 4Android源码分析二: 《JNI智能指针之实现篇》

    文/Tamic http://blog.csdn.net/sk719887916/article/details/53462268 回顾 上一篇介绍了<ReactNative4Android源码 ...

  3. Android开发学习之路--性能优化之布局优化

      Android性能优化方面也有很多文章了,这里就做一个总结,从原理到方法,工具等做一个简单的了解,从而可以慢慢地改变编码风格,从而提高性能. 一.Android系统是如何处理UI组件的更新操作的 ...

  4. 安卓高级3 Android应用Design Support Library完全使用实例

    原作者:http://www.open-open.com/lib/view/open1433385856119.html 1 背景 上周一年一度的Google IO全球开发者大会刚刚结束,Google ...

  5. Bootstrap3 栅格系统-嵌套列

    为了使用内置的栅格系统将内容再次嵌套,可以通过添加一个新的 .row 元素和一系列 .col-sm-* 元素到已经存在的 .col-sm-* 元素内.被嵌套的行(row)所包含的列(column)的个 ...

  6. 在ubuntu上搭建交叉编译环境---arm-none-eabi-gcc

    最近要开始搞新项目,基于arm的高通方案的项目. 那么,如何在ubuntu上搭建这个编译环境呢? 1.找到相关的安装包:http://download.csdn.net/download/storea ...

  7. REFRESH删除POSTGRESQL

    sudo apt-get install python-psycopg2sudo apt-get install postgresql sudo su - postgres createuser -- ...

  8. 28 自定义View画坐标和柱状图

    自定义View类 RectView.java package com.qf.sxy.day29_customview.widget; import android.content.Context; i ...

  9. 微信小程序基础之新建的项目文件图解

    昨天发布的文章,感觉对于学习不够直观,所以今天重点在图标上进行了详细的对应介绍,稍后会尝试开发小程序控件的使用.转载请标注出处,谢谢!

  10. Dynamics CRM2016 业务流程之Task Flow(二)

    接上篇,Page页设置完后,按照业务流程管理也可以继续设置Insert page after branch 或者 Add branch,我这里选择后者,并设置了条件,如果Pipeline Phase ...