学习TensorFlow,线性回归模型
学习TensorFlow,在MNIST数据集上建立softmax回归模型并测试
一、代码
<span style="font-size:18px;">from tensorflow.examples.tutorials.mnist import input_data
mnist =input_data.read_data_sets('MNIST_data', one_hot=True)
import tensorflow astf
sess =tf.InteractiveSession()
x =tf.placeholder(tf.float32, shape=[None, 784])
y_ =tf.placeholder(tf.float32, shape=[None, 10])
W =tf.Variable(tf.zeros([784,10]))
b =tf.Variable(tf.zeros([10]))
sess.run(tf.initialize_all_variables())
y =tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy =-tf.reduce_sum(y_*tf.log(y))
train_step =tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
for i in range(1000):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_:batch[1]})
correct_prediction =tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy =tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval(feed_dict={x:mnist.test.images, y_: mnist.test.labels}))</span>
二、运行结果
三、代码解析
import tensorflow as tf
sess =tf.InteractiveSession()
InteractiveSession()可以一边构建计算图,一边执行,而Session()需要把计算图全部构建完成才能执行
x =tf.placeholder(tf.float32, shape=[None, 784])
y_ =tf.placeholder(tf.float32, shape=[None, 10])
创建图像输入节点和目标输出节点
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
构建softmax回归模型的参数:权重和偏置
sess.run(tf.initialize_all_variables())
初始化所有的variables</span>
y = tf.nn.softmax(tf.matmul(x,W)+ b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
预测输出,使用交叉熵作为损失函数
train_step =tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
步长为0.01,使用梯度下降法训练模型
for i in range(1000):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x:batch[0], y_: batch[1]})
训练周期为1000,每个周期batch是50幅图像
correct_prediction =tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
比较每个预测结果和真实结果,返回一个二值向量
accuracy =tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
将二值向量转换为浮点向量,并计算正确率
print(accuracy.eval(feed_dict={x:mnist.test.images, y_: mnist.test.labels}))
打印输出训练模型对数据集的测试结果,feed_dict指定输入图像数据和目标输出结果
参考资料:https://www.tensorflow.org/versions/r0.7/tutorials/mnist/pros/index.html
学习TensorFlow,线性回归模型的更多相关文章
- [tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...
- 莫烦python教程学习笔记——线性回归模型的属性
#调用查看线性回归的几个属性 # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # ...
- TensorFlow从1到2(七)线性回归模型预测汽车油耗以及训练过程优化
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是 ...
- tensorflow入门(1):构造线性回归模型
今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = ...
- 线性回归模型的 MXNet 与 TensorFlow 实现
本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-l ...
- 用Tensorflow完成简单的线性回归模型
思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点. 1)随机生成1000个数据点,围绕在 ...
- TensorFlow笔记-模型的保存,恢复,实现线性回归
模型的保存 tf.train.Saver(var_list=None,max_to_keep=5) •var_list:指定将要保存和还原的变量.它可以作为一个 dict或一个列表传递. •max_t ...
- SparkMLlib学习之线性回归
SparkMLlib学习之线性回归 (一)回归的概念 1,回归与分类的区别 分类模型处理表示类别的离散变量,而回归模型则处理可以取任意实数的目标变量.但是二者基本的原则类似,都是通过确定一个模型,将输 ...
- ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档]
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直 ...
随机推荐
- 转载:使用Math.floor和Math.random取随机整数
Math.random():获取0~1随机数 Math.floor() method rounds a number DOWNWARDS to the nearest integer, and ret ...
- Weekly Contest 75题解
Q1. Rotate String(796) We are given two strings, A and B. A shift on A consists of taking string A a ...
- sublime text3中设置Emmet输入标签自动闭合
项目后端前一段时间从C#转成了JAVA,在开发的过程中,由于HTML对标签的语法很宽松,比如这样:<img src="" alt="">在标签的结尾 ...
- Unity使用C++作为游戏逻辑脚本的研究
文章申明:本文来自JacksonDunstan的博客系列文章内容摘取和翻译,版权归其所有,附上原文的链接,大家可以有空阅读原文:C++ Scripting( in Unity) 一.C#和C++的通信 ...
- 剑指架构师系列-Redis安装与使用
1.安装Redis 我们在VMware中安装CentOS 64位系统后,在用户目录下下载安装Redis. 下载redis目前最稳定版本也是功能最完善,集群支持最好并加入了sentinel(哨兵-高可用 ...
- python笔记十(列表生成式、字典生成式、生成器、生成器的并行)
一.列表生成式 列表生成式就是python设置的可以用来可以生成列表的. 如要生成一个0-9的列表我们可以通过以下代码实现: >>> list(range(10)) [0, 1, 2 ...
- 关于基因组注释文件GTF的解释
GTF文件的全称是gene transfer format,主要是对染色体上的基因进行标注.怎么理解呢,其实所谓的基因名,基因座等,都只是后来人们给一段DNA序列起的名字而已,还原到细胞中就是细胞核里 ...
- jQuery 效果 – 停止动画
jQuery stop() 方法用于在动画或效果完成前对它们进行停止. 点击这里,向上/向下滑动面板 实例 jQuery stop() 滑动 演示 jQuery stop() 方法. jQuery s ...
- Oracle数据库常用命令记录
1.Sql建表 CREATE TABLE AAABBBCCCDDD( ID ) primary key, AAAAAAAA ) not NULL, BBBBBBBB ), CCCCCCCC ), DD ...
- PGM:贝叶斯网的参数估计
http://blog.csdn.net/pipisorry/article/details/52578631 本文讨论(完备数据的)贝叶斯网的参数估计问题:贝叶斯网的MLE最大似然估计和贝叶斯估计. ...